Small maximal matchings in random graphs

被引:4
作者
Zito, M [1 ]
机构
[1] Univ Liverpool, Dept Comp Sci, Liverpool L69 7ZF, Merseyside, England
来源
LATIN 2000: THEORETICAL INFORMATICS | 2000年 / 1776卷
关键词
D O I
10.1007/10719839_2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We look at the minimal size of a maximal matching in general, bipartite and d-regular random graphs. We prove that the ratio between the sizes of any two maximal matchings approaches one in dense random graphs and random bipartite graphs. Weaker bounds hold for sparse random graphs and random d-regular graphs. We also describe an algorithm that with high probability finds a matching of size strictly less than n/2 in a cubic graph. The result is based on approximating the algorithm dynamics by a system of linear differential equations.
引用
收藏
页码:18 / 27
页数:10
相关论文
共 11 条
[1]  
Bollobas B, 1985, RANDOM GRAPHS
[2]   PATHS TREES AND FLOWERS [J].
EDMONDS, J .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (03) :449-&
[3]   ON EXISTENCE OF A FACTOR OF DEGREE 1 OF A CONNECTED RANDOM GRAPH [J].
ERDOS, P ;
RENYI, A .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1966, 17 (3-4) :359-+
[4]   COLORING RANDOM GRAPHS [J].
GRIMMETT, GR ;
MCDIARMID, CJH .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (MAR) :313-324
[5]  
Hopcroft J. E., 1973, SIAM Journal on Computing, V2, P225, DOI 10.1137/0202019
[6]  
Korte B, 1978, ANN DISCRETE MATH, V2, P65, DOI [10.1016/S0167-5060(08)70322-4, DOI 10.1016/S0167-5060(08)70322-4]
[7]  
MCKAY BD, 1987, ARS COMBINATORIA, V23A, P179
[8]  
Micali S., 1980, 21st Annual Symposium on Foundations of Computer Science, P17
[9]   DIFFERENTIAL EQUATIONS FOR RANDOM PROCESSES AND RANDOM GRAPHS [J].
Wormald, Nicholas C. .
ANNALS OF APPLIED PROBABILITY, 1995, 5 (04) :1217-1235
[10]   EDGE DOMINATING SETS IN GRAPHS [J].
YANNAKAKIS, M ;
GAVRIL, F .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 38 (03) :364-372