Kernel estimators for the second order parameter in extreme value statistics

被引:51
作者
Goegebeur, Yuri [1 ]
Beirlant, Jan [2 ,3 ]
de Wet, Tertius [4 ]
机构
[1] Univ So Denmark, Dept Math & Comp Sci, DK-5230 Odense M, Denmark
[2] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
[3] Katholieke Univ Leuven, Leuven Stat Res Ctr, B-3001 Heverlee, Belgium
[4] Univ Stellenbosch, Dept Stat & Actuarial Sci, ZA-7602 Matieland, South Africa
基金
新加坡国家研究基金会;
关键词
Extreme value statistics; Pareto-type model; Second order parameter; Kernel statistic; TAIL INDEX ESTIMATION; REGRESSION; THRESHOLD;
D O I
10.1016/j.jspi.2010.03.029
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop and study in the framework of Pareto-type distributions a general class of kernel estimators for the second order parameter rho, a parameter related to the rate of convergence of a sequence of linearly normalized maximum values towards its limit. Inspired by the kernel goodness-of-fit statistics introduced in Goegebeur et al. (2008), for which the mean of the normal limiting distribution is a function of rho, we construct estimators for rho using ratios of ratios of differences of such goodness-of-fit statistics, involving different kernel functions as well as power transformations. The consistency of this class of rho estimators is established under some mild regularity conditions on the kernel function, a second order condition on the tail function 1 - F of the underlying model, and for suitably chosen intermediate order statistics. Asymptotic normality is achieved under a further condition on the tail function, the so-called third order condition. Two specific examples of kernel statistics are studied in greater depth, and their asymptotic behavior illustrated numerically. The finite sample properties are examined by means of a simulation study. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2632 / 2652
页数:21
相关论文
共 24 条
[1]  
ALVES MIF, 2003, PORTUGALIAE MATH, V0060, P00193
[2]  
[Anonymous], 2004, WILEY SERIES PROBABI
[3]  
[Anonymous], 2002, Extremes, DOI [DOI 10.1023/A:1022171205129, DOI 10.1023/A:]
[4]  
[Anonymous], 1999, Extremes, DOI DOI 10.1023/A:1009975020370
[5]   Tail index estimation, pareto quantile plots, and regression diagnostics [J].
Beirlant, J ;
Vynckier, P ;
Teugels, JL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (436) :1659-1667
[6]   Burr regression and portfolio segmentation [J].
Beirlant, J ;
Goegebeur, Y ;
Verlaak, R ;
Vynckier, P .
INSURANCE MATHEMATICS & ECONOMICS, 1998, 23 (03) :231-250
[7]   ASYMPTOTIC DISTRIBUTION OF LINEAR COMBINATIONS OF FUNCTIONS OF ORDER STATISTICS WITH APPLICATIONS TO ESTIMATION [J].
CHERNOFF, H ;
GASTWIRTH, JL ;
JOHNS, MV .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (01) :52-+
[8]   Semi-parametric estimation for heavy tailed distributions [J].
Ciuperca, Gabriela ;
Mercadier, Cecile .
EXTREMES, 2010, 13 (01) :55-87
[9]  
DE HAAN L., 2006, SPRING S OPERAT RES, DOI 10.1007/0-387-34471-3
[10]   ON THE ESTIMATION OF THE EXTREME-VALUE INDEX AND LARGE QUANTILE ESTIMATION [J].
DEKKERS, ALM ;
DEHAAN, L .
ANNALS OF STATISTICS, 1989, 17 (04) :1795-1832