Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations

被引:65
作者
Ono, K [1 ]
机构
[1] Univ Tokushima, Dept Math & Nat Sci, Tokushima 7708502, Japan
关键词
dissipative wave equation; critical exponent; global existence; asymptotic behavior; decay rate;
D O I
10.3934/dcds.2003.9.651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the global existence and asymptotic behavior of solutions to the Cauchy problem for the semilinear dissipative wave equations : squareu + partial derivative(t)u = \u\(alpha+1), u\(t=0) = epsilonu(o) is an element of H-1 boolean AND L-1, partial derivative(t)u\(t=o) = epsilonu(1) is an element of L-2 boolean AND L-1 with a small parameter epsilon > 0. When N less than or equal to 3 and 2/N < α ≤ 2/[N - 2](+), we show the global solvability and derive the sharp rates of the solutions.
引用
收藏
页码:651 / 662
页数:12
相关论文
共 19 条
[1]  
Belleri V, 2001, DISCRET CONTIN DYN S, V7, P719
[2]  
Cazenave T., 1998, OXFORD LECT SERIES M
[3]  
COURANT R, 1989, METHODS MATH PHYSICS, V2
[4]  
Evans L.C., 1998, PARTIAL DIFFERENTIAL
[5]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[6]   Critical exponents for semilinear dissipative wave equations in RN [J].
Ikehata, R ;
Ohta, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (01) :87-97
[7]  
Karachalios NI, 2002, DISCRETE CONT DYN-A, V8, P939
[8]   ON THE DECAY PROPERTY OF SOLUTIONS TO THE CAUCHY-PROBLEM OF THE SEMILINEAR WAVE-EQUATION WITH A DISSIPATIVE TERM [J].
KAWASHIMA, S ;
NAKAO, M ;
ONO, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1995, 47 (04) :617-653
[9]  
Kirane M, 2002, ADV NONLINEAR STUD, V2, P41
[10]  
Li T. T., 1995, Discrete Contin. Dyn. Syst., V1, P503