Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations

被引:11
作者
Taniguchi, Masaharu [1 ]
机构
[1] Okayama Univ, Res Inst Interdisciplinary Sci, Kita Ku, 3-1-1 Tsushimanaka, Okayama 7008530, Japan
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2019年 / 36卷 / 07期
基金
日本学术振兴会;
关键词
Traveling front; Reaction-diffusion equation; Asymmetric; Balanced; CURVED FRONTS; GLOBAL STABILITY; PYRAMIDAL SHAPES; CLASSIFICATION; INTERFACES; EXISTENCE; WAVES;
D O I
10.1016/j.anihpc.2019.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a balanced bistable reaction-diffusion equation, an axisymmetric traveling front has been well known. This paper proves that an axially asymmetric traveling front with any positive speed does exist in a balanced bistable reaction-diffusion equation. Our method is as follows. We use a pyramidal traveling front for an unbalanced reaction-diffusion equation whose cross section has a major axis and a minor axis. Preserving the ratio of the major axis and a minor axis to be a constant and taking the balanced limit, we obtain a traveling front in a balanced bistable reaction-diffusion equation. This traveling front is monotone decreasing with respect to the traveling axis, and its cross section is a compact set with a major axis and a minor axis when the constant ratio is not 1. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1791 / 1816
页数:26
相关论文
共 26 条
[1]  
Angenent S.B., 1992, PROGR NONLINEAR DIFF, P21, DOI 10.1007/978-1-4612-0393-3_2
[2]  
Chen X. F., 1997, ADV DIFFERENTIAL EQU, V2, P125, DOI [DOI 10.57262/ADE/1366809230, DOI 10.1186/1687-1847-2013-125]
[3]   GENERATION AND PROPAGATION OF INTERFACES FOR REACTION DIFFUSION-EQUATIONS [J].
CHEN, XF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :116-141
[4]   Traveling waves with paraboloid like interfaces for balanced bistable dynamics [J].
Chen, Xinfu ;
Guo, Jong-Shenq ;
Hamel, Francois ;
Ninomiya, Hirokazu ;
Roquejoffre, Jean-Michel .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (03) :369-393
[5]  
Daskalopoulos P, 2010, J DIFFER GEOM, V84, P455
[6]   Finite topology self-translating surfaces for the mean curvature flow in R3 [J].
Davila, Juan ;
del Pino, Manuel ;
Xuan Hien Nguyen .
ADVANCES IN MATHEMATICS, 2017, 320 :674-729
[7]   Traveling Waves with Multiple and Nonconvex Fronts for a Bistable Semilinear Parabolic Equation [J].
del Pino, Manuel ;
Kowalczyk, Michal ;
Wei, Juncheng .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (04) :481-547
[8]   On De Giorgi's conjecture in dimension N ≥ 9 [J].
del Pino, Manuel ;
Kowalczyk, Michal ;
Wei, Juncheng .
ANNALS OF MATHEMATICS, 2011, 174 (03) :1485-1569
[9]  
FIFE PC, 1977, ARCH RATION MECH AN, V65, P335, DOI 10.1007/BF00250432
[10]  
Gilbarg D., 1983, Grundlehren der mathematischen Wissenschaften, V2nd