Existential monadic second order convergence law fails on sparse random graphs

被引:1
作者
Egorova, Alena [1 ]
Zhukovskii, Maksim [1 ]
机构
[1] Moscow Inst Phys & Technol, Lab Adv Combinator & Network Applicat, Dolgoprudnyi, Russia
基金
俄罗斯科学基金会;
关键词
PROBABILITIES; MODELS;
D O I
10.1016/j.ejc.2019.103017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we prove that existential monadic second order convergence law fails for the binomial random graph G(n, n(-alpha)) for every alpha is an element of (0, 1). (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:19
相关论文
共 18 条
[1]  
Alon Noga, 2004, The probabilistic method
[2]  
[Anonymous], 2001, RANDOM GRAPHS
[3]   PROBABILITIES ON FINITE MODELS [J].
FAGIN, R .
JOURNAL OF SYMBOLIC LOGIC, 1976, 41 (01) :50-58
[4]   ON THE INDEPENDENCE NUMBER OF RANDOM GRAPHS [J].
FRIEZE, AM .
DISCRETE MATHEMATICS, 1990, 81 (02) :171-175
[5]  
Glebskii Yu. V., 1969, Cybernetics, V5, P142, DOI 10.1007/BF01071084
[6]  
Janson S., 2000, WIL INT S D
[7]   ON RANDOM MODELS OF FINITE POWER AND MONADIC LOGIC [J].
KAUFMANN, M ;
SHELAH, S .
DISCRETE MATHEMATICS, 1985, 54 (03) :285-293
[8]  
Kaufmann M., 1987, 32 CLI
[9]   The 0-1 law fails for monadic existential second-order logic on undirected graphs [J].
Le Bars, JM .
INFORMATION PROCESSING LETTERS, 2001, 77 (01) :43-48
[10]  
Libkin Leonid, 2004, AN EATCS SERIES