Drag coefficient identification of high-spinning projectile using cubature Kalman filter

被引:3
作者
Zheng, Yucheng [1 ]
Guan, Jun [1 ,2 ]
Yi, Wenjun [1 ]
机构
[1] Nanjing Univ Sci & Technol, Natl Key Lab Transient Phys, Nanjing 210094, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Elect & Informat, Zhenjiang 212100, Jiangsu, Peoples R China
关键词
4D trajectories - Aerodynamic parameters - Cubature kalman filters - Drag coefficient identifications - Identification errors - New parameters - Spinning projectiles - Unscented Kalman Filter;
D O I
10.1063/5.0043224
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In order to obtain the aerodynamic parameters of a high-spinning projectile, a new parameter identification method is proposed based on the Cubature Kalman Filter (CKF). First of all, the motion equation of the spinning stabilized projectile is established by the 4D trajectory model. Second, unknown parameters are added to the state vector to obtain the augmented state vector. Next, a new filter is designed for the identification of the unknown parameters based on the basic theory of the CKF. Finally, the simulation results of the CKF are compared with those of the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). The results of comparison show that the CKF method can effectively identify the aerodynamic parameters and the identification error is less than 1.2%. The CKF method has greater accuracy than the EKF and the UKF.
引用
收藏
页数:6
相关论文
共 14 条
  • [1] Cubature Kalman Filters
    Arasaratnam, Ienkaran
    Haykin, Simon
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) : 1254 - 1269
  • [2] Chen T, 2016, 9TH INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, VOL. 1, (ICMMT 2016), P524, DOI 10.1109/ICMMT.2016.7761828
  • [3] Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter
    Chowdhary, Girish
    Jategaonkar, Ravindra
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2010, 14 (02) : 106 - 117
  • [4] 基于卡尔曼滤波的再入飞行器气动参数辨识
    崔乃刚
    卢宝刚
    傅瑜
    张旭
    [J]. 中国惯性技术学报, 2014, 22 (06) : 755 - 758
  • [5] A New Quaternion-Based Kalman Filter for Human Body Motion Tracking Using the Second Estimator of the Optimal Quaternion Algorithm and the Joint Angle Constraint Method with Inertial and Magnetic Sensors
    Duan, Yingbo
    Zhang, Xiaoyue
    Li, Zhibing
    [J]. SENSORS, 2020, 20 (21) : 1 - 19
  • [6] Adaptive sliding model guidance law considering input saturation and autopilot lag
    Guan, Jun
    Yi, Wenjun
    [J]. AIP ADVANCES, 2020, 10 (12)
  • [7] Han Z. P., 2014, Exterior ballistics of projectiles and rockets
  • [8] Liao F, 2016, CHIN CONTR CONF, P865, DOI 10.1109/ChiCC.2016.7553194
  • [9] Ming Q.L., 2021, POS NAV TIM TECHN 21, P143
  • [10] State and Parameter Estimation in Distributed Constrained Systems. 1. Extended Kalman Filtering of a Special Class of Differential-Algebraic Equation Systems
    Mobed, Parham
    Munusamy, Sudhakar
    Bhattacharyya, Debangsu
    Rengaswamy, Raghunathan
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (01) : 206 - 215