Hydrothermal solid-gas route to TiO2 nanoparticles/nanotube arrays for high-performance supercapacitors

被引:43
作者
Fan, Haowen [1 ]
Zhang, He [1 ]
Luo, Xiaolei [2 ]
Liao, Maoying [1 ]
Zhu, Xufei [1 ]
Ma, Jing [2 ]
Song, Ye [1 ]
机构
[1] Nanjing Univ Sci & Technol, Educ Minist, Key Lab Soft Chem & Funct Mat, Nanjing 210094, Jiangsu, Peoples R China
[2] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
TiO2; nanotubes; Hydrothermal solid-gas method; Hybrid structure; Supercapacitors; SENSITIZED SOLAR-CELLS; NANOTUBE-ARRAYS; FACILE METHOD; CRYSTALLIZATION; EFFICIENCY; WATER; ENHANCEMENT; FABRICATION; CAPACITANCE; LENGTH;
D O I
10.1016/j.jpowsour.2017.05.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although TiO2 nanotube arrays (TNTAs) have shown great promise as supercapacitor materials, their specific capacitances are still not comparable with some typical materials. Here, TiO2 nanoparticles (NPs)/TNTAs hybrid structure has been derived from the anodized TNTAs by a facile hydrothermal solidgas method (HSGM), which can avoid cracking or curling of the TNTAs from Ti substrate. The obtained NPs/TNTAs hybrid structure can exhibit a -4.90 times increase in surface area and a -5.49 times increase in areal specific capacitance compared to the TNTAs without HSGM treatment. Besides, the argonatmosphere annealing can offer improved areal capacitance and cycling stability relative to the airatmosphere annealing. The hydrothermal vapor pressure is a key factor for controlling microscopic morphologies of TNTAs, the morphology transformations of TNTAs during the HSGM treatment can be accelerated under enhanced vapor pressures. The highest areal capacitance of HSGM-treated TNTAs is up to 76.12 mF cm(-2) at 0.5 mA cm(-2), well above that of any TiO2 materials reported to date. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:230 / 240
页数:11
相关论文
共 42 条
[1]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[2]   Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells [J].
Chen, Chien-Chon ;
Chung, Hsien-Wen ;
Chen, Chin-Hsing ;
Lu, Hsuch-Pei ;
Lan, Chi-Ming ;
Chen, Si-Fan ;
Luo, Liyang ;
Hung, Chen-Shiung ;
Diau, Eric Wei-Guang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (48) :19151-19157
[3]   Hydrogen:: A metastable donor in TiO2 single crystals [J].
Chen, W. P. ;
Wang, Y. ;
Chan, H. L. W. .
APPLIED PHYSICS LETTERS, 2008, 92 (11)
[4]   One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage [J].
Dong, Shanmu ;
Chen, Xiao ;
Gu, Lin ;
Zhou, Xinhong ;
Li, Lanfeng ;
Liu, Zhihong ;
Han, Pengxian ;
Xu, Hongxia ;
Yao, Jianhua ;
Wang, Haibo ;
Zhang, Xiaoying ;
Shang, Chaoqun ;
Cui, Guanglei ;
Chen, Liquan .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3502-3508
[5]   High-contrast electrochromic switching using transparent lift-off layers of self-organized TiO2 nanotubes [J].
Ghicov, Andrei ;
Alba, Sergiu P. ;
Macak, Jan M. ;
Schmuki, Patrik .
SMALL, 2008, 4 (08) :1063-1066
[6]   Enhanced Photoelectrochemical Water Splitting Performance of Anodic TiO2 Nanotube Arrays by Surface Passivation [J].
Gui, Qunfang ;
Xu, Zhen ;
Zhang, Haifeng ;
Cheng, Chuanwei ;
Zhu, Xufei ;
Yin, Min ;
Song, Ye ;
Lu, Linfeng ;
Chen, Xiaoyuan ;
Li, Dongdong .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (19) :17053-17058
[7]   Fast migration of fluoride ions in growing anodic titanium oxide [J].
Habazaki, H. ;
Fushimi, K. ;
Shimizu, K. ;
Skeldon, P. ;
Thompson, G. E. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (05) :1222-1227
[8]   Heterostructured TiO2 Nanoparticles/Nanotube Arrays: In Situ Formation from Amorphous TiO2 Nanotube Arrays in Water and Enhanced Photocatalytic Activity [J].
Huo, Kaifu ;
Wang, Hairong ;
Zhang, Xuming ;
Cao, Yue ;
Chu, Paul K. .
CHEMPLUSCHEM, 2012, 77 (04) :323-329
[9]   Hydrothermal crystallization and modification of surface hydroxyl groups of anodized TiO2 nanotube-arrays for more efficient photoenergy conversion [J].
Kuo, Yu-Yen ;
Li, Tze-Huei ;
Yao, Jing-Neng ;
Lin, Chiung-Yuan ;
Chien, Chao-Hsin .
ELECTROCHIMICA ACTA, 2012, 78 :236-243
[10]   Ultrafast Room-Temperature Crystallization of TiO2 Nanotubes Exploiting Water-Vapor Treatment [J].
Lamberti, Andrea ;
Chiodoni, Angelica ;
Shahzad, Nadia ;
Bianco, Stefano ;
Quaglio, Marzia ;
Pirri, Candido F. .
SCIENTIFIC REPORTS, 2015, 5