Application of ZnTiO3 in quantum-dot-sensitized solar cells and numerical simulations using first-principles theory

被引:37
作者
Yu, Jing [1 ]
Li, Dong [2 ]
Zhu, Lixin [3 ]
Xu, Xiaoliang [1 ]
机构
[1] Chinese Acad Sci, Univ Sci & Technol China, Sch Phys Sci, Key Lab Strongly Coupled Quantum Matter Phys, Jinzhai Rd 96, Hefei 230026, Anhui, Peoples R China
[2] Kent State Univ, Inst Liquid Crystal, 800 E Summit St, Kent, OH 44240 USA
[3] Anhui Med Univ, Affiliated Hosp 1, Ctr Lab, Hefei 230022, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
ZnTiO3; Electron mobility; Quantum-dot-sensitized solar cell; Photoanode materials; CARRIER MOBILITY; TIO2; PERFORMANCE; EFFICIENCY; SNO2; ZNO; PHOTOELECTRODE; PHOTOANODE; CERAMICS; GROWTH;
D O I
10.1016/j.jallcom.2016.04.224
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For the first time, ZnTiO3 applied as an innovative photoanode material in quantum-dot-sensitized solar cells (QDSSCs) has been systematically researched both theoretically and experimentally in this paper. The electron mobility (150-400 cm(2)/vs) of this material, achieved via the deformation potential theory, is much higher than that of most known photoanodes, including TiO2 and ZnO which have been heavily researched. The preparation of QDSSCs with the structure of ZnTiO3/CdS/CdSe yielded a high energy conversion efficiency of 1.95% and a large short-circuit current density of 5.96 mA/cm(2), which are also superior to the characteristics of other emerging photoanode materials, such as SnO2, Zn2SnO4, BaTiO3, and so on, indicating the good potential of this material for using in QDSSCs. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 95
页数:8
相关论文
共 40 条
[1]   Solid state synthesis and structural characterization of zinc titanates [J].
Ayed, Sarra ;
Abdelkefi, Helmi ;
Khemakhem, Hamadi ;
Matoussi, Adel .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 677 :185-189
[2]   DEFORMATION POTENTIALS AND MOBILITIES IN NON-POLAR CRYSTALS [J].
BARDEEN, J ;
SHOCKLEY, W .
PHYSICAL REVIEW, 1950, 80 (01) :72-80
[3]   Zinc oxide-zinc stannate core-shell nanorod arrays for CdS quantum dot sensitized solar cells [J].
Bora, Tanujjal ;
Kyaw, Htet H. ;
Dutta, Joydeep .
ELECTROCHIMICA ACTA, 2012, 68 :141-145
[4]   Polarity-Reversed Robust Carrier Mobility in Monolayer MoS2 Nanoribbons [J].
Cai, Yongqing ;
Zhang, Gang ;
Zhang, Yong-Wei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (17) :6269-6275
[5]   In situ growth of lamellar ZnTiO3 nanosheets on TiO2 tubular array with enhanced photocatalytic activity [J].
Cai, Yunyu ;
Ye, Yixing ;
Tian, Zhenfei ;
Liu, Jun ;
Liu, Yishu ;
Liang, Changhao .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (46) :20203-20209
[6]   Search for improved transparent conducting oxides:: A fundamental investigation of CdO, Cd2SnO4, and Zn2SnO4 [J].
Coutts, TJ ;
Young, DL ;
Li, X ;
Mulligan, WP ;
Wu, X .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 2000, 18 (06) :2646-2660
[7]   Preparing ZnO nanowires in mesoporous TiO2 photoanode by an in-situ hydrothermal growth for enhanced light-trapping in quantum dots-sensitized solar cells [J].
Deng, Jianping ;
Wang, Minqiang ;
Zhang, Pengchao ;
Ye, Wei .
ELECTROCHIMICA ACTA, 2016, 200 :12-20
[8]   Recent advances in critical materials for quantum dot-sensitized solar cells: a review [J].
Duan, Jialong ;
Zhang, Huihui ;
Tang, Qunwei ;
He, Benlin ;
Yu, Liangmin .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (34) :17497-17510
[9]   Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium-zinc hybrid oxides [J].
Fu, Rongrong ;
Wang, Qingyao ;
Gao, Shanmin ;
Wang, Zeyan ;
Huang, Baibiao ;
Dai, Ying ;
Lu, Jun .
JOURNAL OF POWER SOURCES, 2015, 285 :449-459
[10]   Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells [J].
Giordano, Fabrizio ;
Abate, Antonio ;
Baena, Juan Pablo Correa ;
Saliba, Michael ;
Matsui, Taisuke ;
Im, Sang Hyuk ;
Zakeeruddin, Shaik M. ;
Nazeeruddin, Mohammad Khaja ;
Hagfeldt, Anders ;
Graetzel, Michael .
NATURE COMMUNICATIONS, 2016, 7