ROBINSON STABILITY OF PARAMETRIC CONSTRAINT SYSTEMS VIA VARIATIONAL ANALYSIS

被引:27
|
作者
Gfrerer, Helmut [1 ]
Mordukhovich, Boris S. [2 ,3 ]
机构
[1] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[3] RUDN Univ, Moscow 117198, Russia
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
parametric constraint systems; Robinson stability; variational analysis; first- and second-order generalized differentiation; metric regularity and subregularity; METRIC SUBREGULARITY; OPTIMALITY CONDITIONS; QUALIFICATION CONDITIONS; IMPLICIT MULTIFUNCTIONS; MATHEMATICAL PROGRAMS; BANACH-SPACES; ERROR-BOUNDS; OPTIMIZATION; 2ND-ORDER; CALMNESS;
D O I
10.1137/16M1086881
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates a well-posedness property of parametric constraint systems which we call Robinson stability. Based on advanced tools of variational analysis and generalized differentiation, we derive first- and second-order conditions for this property under minimal constraint qualifications and establish relationships of Robinson stability with other well-posedness properties in variational analysis and optimization. The results obtained are applied to robust Lipschitzian stability of parametric variational systems.
引用
收藏
页码:438 / 465
页数:28
相关论文
共 50 条
  • [1] STABILITY ANALYSIS OF PARAMETRIC VARIATIONAL SYSTEMS
    Li, Shengjie
    Liao, Chunmei
    Li, Minghua
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2011, 1 (02): : 317 - 331
  • [2] SECOND-ORDER VARIATIONAL ANALYSIS OF PARAMETRIC CONSTRAINT AND VARIATIONAL SYSTEMS
    Gfrerer, Helmut
    Mordukhovich, Boris S.
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (01) : 423 - 453
  • [3] Robinson metric regularity of parametric variational systems
    Li, M. H.
    Li, S. J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) : 2262 - 2271
  • [4] Stability Analysis for Composite Optimization Problems and Parametric Variational Systems
    B. S. Mordukhovich
    M. E. Sarabi
    Journal of Optimization Theory and Applications, 2017, 172 : 554 - 577
  • [5] Stability Analysis for Composite Optimization Problems and Parametric Variational Systems
    Mordukhovich, B. S.
    Sarabi, M. E.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 172 (02) : 554 - 577
  • [6] Sensitivity Analysis of Stochastic Constraint and Variational Systems via Generalized Differentiation
    Mordukhovich, Boris S.
    Perez-Aros, Pedro
    SET-VALUED AND VARIATIONAL ANALYSIS, 2023, 31 (01)
  • [7] Sensitivity Analysis of Stochastic Constraint and Variational Systems via Generalized Differentiation
    Boris S. Mordukhovich
    Pedro Pérez-Aros
    Set-Valued and Variational Analysis, 2023, 31
  • [8] Full Stability of General Parametric Variational Systems
    Mordukhovich, B. S.
    Nghia, T. T. A.
    Pham, D. T.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2018, 26 (04) : 911 - 946
  • [9] Full Stability of General Parametric Variational Systems
    B. S. Mordukhovich
    T. T. A. Nghia
    D. T. Pham
    Set-Valued and Variational Analysis, 2018, 26 : 911 - 946
  • [10] Constraint analysis for variational discrete systems
    Dittrich, Bianca
    Hohn, Philipp A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (09)