Research over detecting anomalous human behavior in crowded scenes has created much attention due to its direct applicability over a large number of real-world security applications. In this work, we propose a novel statistical feature descriptor to detect violent human activities in real-world surveillance videos. Standard spatiotemporal feature descriptors are used to extract motion cues from videos. Finally, a discriminative SVM classifier is used to classify violent/non-violent scenes present in the videos with the help of feature representation formed out of the proposed statistical descriptor. Efficiency of the proposed approach is tested on crowd violence and hockey fight benchmark datasets.
机构:
CUNY, Dept Comp Sci, Grad Ctr, New York, NY 10016 USACUNY, Dept Comp Sci, Grad Ctr, New York, NY 10016 USA
Xian, Yang
;
Rong, Xuejian
论文数: 0引用数: 0
h-index: 0
机构:
CUNY, City Coll, Dept Elect Engn, New York, NY 10031 USACUNY, Dept Comp Sci, Grad Ctr, New York, NY 10016 USA
Rong, Xuejian
;
Yang, Xiaodong
论文数: 0引用数: 0
h-index: 0
机构:
NVIDIA Res, Santa Clara, CA 95050 USACUNY, Dept Comp Sci, Grad Ctr, New York, NY 10016 USA
Yang, Xiaodong
;
Tian, Yingli
论文数: 0引用数: 0
h-index: 0
机构:
CUNY, City Coll, Dept Elect Engn, New York, NY 10031 USA
CUNY, Grad Ctr, Dept Comp Sci, New York, NY 10031 USACUNY, Dept Comp Sci, Grad Ctr, New York, NY 10016 USA
机构:
CUNY, Dept Comp Sci, Grad Ctr, New York, NY 10016 USACUNY, Dept Comp Sci, Grad Ctr, New York, NY 10016 USA
Xian, Yang
;
Rong, Xuejian
论文数: 0引用数: 0
h-index: 0
机构:
CUNY, City Coll, Dept Elect Engn, New York, NY 10031 USACUNY, Dept Comp Sci, Grad Ctr, New York, NY 10016 USA
Rong, Xuejian
;
Yang, Xiaodong
论文数: 0引用数: 0
h-index: 0
机构:
NVIDIA Res, Santa Clara, CA 95050 USACUNY, Dept Comp Sci, Grad Ctr, New York, NY 10016 USA
Yang, Xiaodong
;
Tian, Yingli
论文数: 0引用数: 0
h-index: 0
机构:
CUNY, City Coll, Dept Elect Engn, New York, NY 10031 USA
CUNY, Grad Ctr, Dept Comp Sci, New York, NY 10031 USACUNY, Dept Comp Sci, Grad Ctr, New York, NY 10016 USA