ALMOST-PERIODIC HOMOGENIZATION OF ELLIPTIC PROBLEMS IN NON-SMOOTH DOMAINS

被引:1
|
作者
Geng, Jun [1 ]
Shi, Bojing [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou, Gansu, Peoples R China
关键词
CONVERGENCE-RATES; SYSTEMS;
D O I
10.1090/proc/14105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a family of second-order elliptic operators {L-epsilon} in divergence form with rapidly oscillating and almost-periodic coefficients in Lipschitz domains. By using the compactness method, we show that the uniform W-1,W- p estimate of second-order elliptic systems holds for 2n/n+1 -delta < p < 2n/n-1 + delta; the ranges are sharp for n = 2 or n = 3. In the scalar case we obtain that the W-1,W- p estimate holds for 3/2 - delta < p < 3 + delta if n >= 3, and 4/3 - delta < p < 4 + delta if n = 2; the ranges of p are sharp.
引用
收藏
页码:4339 / 4352
页数:14
相关论文
共 50 条