Hematite nanoflakes as anode electrode materials for rechargeable lithium-ion batteries

被引:59
作者
Chun, Li [1 ]
Wu, Xiaozhen [1 ]
Lou, Xiaoming [1 ]
Zhang, Youxiang [1 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
基金
美国国家科学基金会;
关键词
Nanocrystals; Hematite; Conversion reaction; Anode electrode materials; Lithium-ion batteries; DEPENDENT ELECTROCHEMICAL PROPERTIES; PARTICLE-SIZE; ALPHA-FE2O3; PERFORMANCE; OXIDES; IRON;
D O I
10.1016/j.electacta.2010.01.016
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hematite (alpha-Fe2O3) nanoflakes and nanocubes were synthesized by liquid-solid-solution method and their properties as anode electrode materials for rechargeable Li+-ion batteries were measured. When changing the water to ethanol volume ratio in the synthesis system, the nanocrystals can be changed from alpha-Fe2O3 to alpha-FeOOH, with shapes being tuned from nanoflakes to nanocubes, non-uniform particles and nanowires. When assembled as the anode electrode materials in rechargeable Li+-ion batteries, the hematite nanoflakes showed one more plateau in the first discharge progress of the voltage-composition curves than hematite nanocrystals with other shapes in the literature. X-ray diffraction, high-resolution transmission electron microscope and electrochemical data showed that this extra plateau came from the formation of Li2Fe3O4 nanoclusters and amorphous Li2O. This experiment showed that like sizes, shapes of nanocrystals may also affect the detailed electrochemical progress. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3089 / 3092
页数:4
相关论文
共 16 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[3]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[4]  
Débart A, 2001, J ELECTROCHEM SOC, V148, pA1266, DOI 10.1149/1.1409971
[5]   Particle size effects on the electrochemical performance of copper oxides toward lithium [J].
Grugeon, S ;
Laruelle, S ;
Herrera-Urbina, R ;
Dupont, L ;
Poizot, P ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) :A285-A292
[6]   Anisotropic x-ray line broadening in goethite-derived haematite [J].
Jiang, JZ ;
Ståhl, K ;
Nielsen, K ;
da Costa, GM .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (23) :4893-4898
[7]   Combined XRD, EXAFS, and Mossbauer studies of the reduction by lithium of α-Fe2O3 with various particle sizes [J].
Larcher, D ;
Bonnin, D ;
Cortes, R ;
Rivals, I ;
Personnaz, L ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1643-A1650
[8]   Effect of particle size on lithium intercalation into α-Fe2O3 [J].
Larcher, D ;
Masquelier, C ;
Bonnin, D ;
Chabre, Y ;
Masson, V ;
Leriche, JB ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (01) :A133-A139
[9]   The electrochemical reduction of Co3O4 in a lithium cell [J].
Larcher, D ;
Sudant, G ;
Leriche, JB ;
Chabre, Y ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (03) :A234-A241
[10]   Impact of binder choice on the performance of α-Fe2O3 as a negative electrode [J].
Li, Jing ;
Dahn, H. M. ;
Krause, L. J. ;
Le, Dinh-Ba ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (11) :A812-A816