Deep Learning for Massive MIMO CSI Feedback

被引:665
|
作者
Wen, Chao-Kai [1 ]
Shih, Wan-Ting [1 ]
Jin, Shi [2 ]
机构
[1] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 804, Taiwan
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Massive MIMO; FDD; compressed sensing; deep learning; conventional neural network;
D O I
10.1109/LWC.2018.2818160
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In frequency division duplex mode, the downlink channel state information (CSI) should be sent to the base station through feedback links so that the potential gains of a massive multiple-input multiple-output can be exhibited. However, such a transmission is hindered by excessive feedback overhead. In this letter, we use deep learning technology to develop CsiNet, a novel CSI sensing and recovery mechanism that learns to effectively use channel structure from training samples. CsiNet learns a transformation from CSI to a near-optimal number of representations (or codewords) and an inverse transformation from codewords to CSI. We perform experiments to demonstrate that CsiNet can recover CSI with significantly improved reconstruction quality compared with existing compressive sensing (CS)-based methods. Even at excessively low compression regions where CS-based methods cannot work, CsiNet retains effective beamforming gain.
引用
收藏
页码:748 / 751
页数:4
相关论文
共 50 条
  • [41] Exploiting Bi-Directional Channel Reciprocity in Deep Learning for Low Rate Massive MIMO CSI Feedback
    Liu, Zhenyu
    Zhang, Lin
    Ding, Zhi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (03) : 889 - 892
  • [42] Deep Learning-Based CSI Feedback for RIS-Aided Massive MIMO Systems With Time Correlation
    Peng, Zhangjie
    Li, Zhaotian
    Liu, Ruijing
    Pan, Cunhua
    Yuan, Feiniu
    Wang, Jiangzhou
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (08) : 2060 - 2064
  • [43] SCANet: A lightweight deep learning network for massive MIMO CSI feedback based on spatial and channel attention mechanism
    Chen, Huaqiang
    Tan, Weiqiang
    Guo, Jiajia
    Yang, Feiran
    PHYSICAL COMMUNICATION, 2024, 67
  • [44] Deep Learning-Based Joint CSI Feedback and Hybrid Precoding in FDD mmWave Massive MIMO Systems
    Sun, Qiang
    Zhao, Huan
    Wang, Jue
    Chen, Wei
    ENTROPY, 2022, 24 (04)
  • [45] Deep learning for joint channel estimation and feedback in massive MIMO systems
    Guo, Jiajia
    Chen, Tong
    Jin, Shi
    Li, Geoffrey Ye
    Wang, Xin
    Hou, Xiaolin
    DIGITAL COMMUNICATIONS AND NETWORKS, 2024, 10 (01) : 83 - 93
  • [46] Continuous Online Learning-Based CSI Feedback in Massive MIMO Systems
    Zhang, Xudong
    Wang, Jintao
    Lu, Zhilin
    Zhang, Hengyu
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (03) : 557 - 561
  • [47] AnciNet: An Efficient Deep Learning Approach for Feedback Compression of Estimated CSI in Massive MIMO Systems
    Sun, Yuyao
    Xu, Wei
    Fan, Lisheng
    Li, Geoffrey Ye
    Karagiannidis, George K.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (12) : 2192 - 2196
  • [48] Deep Learning-Based CSI Feedback for Terahertz Ultra-Massive MIMO Systems
    Li, Yuling
    Guo, Aihuang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (08) : 1413 - 1416
  • [49] A Manifold Learning-Based CSI Feedback Framework for FDD Massive MIMO
    Cao, Yandi
    Yin, Haifan
    Qin, Ziao
    Li, Weidong
    Wu, Weimin
    Debbah, Merouane
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2025, 73 (03) : 1833 - 1846
  • [50] A Lightweight Deep Network for Efficient CSI Feedback in Massive MIMO Systems
    Sun, Yuyao
    Xu, Wei
    Liang, Le
    Wang, Ning
    Li, Geoffery Ye
    You, Xiaohu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (08) : 1840 - 1844