Deep Learning for Massive MIMO CSI Feedback

被引:665
|
作者
Wen, Chao-Kai [1 ]
Shih, Wan-Ting [1 ]
Jin, Shi [2 ]
机构
[1] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 804, Taiwan
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Massive MIMO; FDD; compressed sensing; deep learning; conventional neural network;
D O I
10.1109/LWC.2018.2818160
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In frequency division duplex mode, the downlink channel state information (CSI) should be sent to the base station through feedback links so that the potential gains of a massive multiple-input multiple-output can be exhibited. However, such a transmission is hindered by excessive feedback overhead. In this letter, we use deep learning technology to develop CsiNet, a novel CSI sensing and recovery mechanism that learns to effectively use channel structure from training samples. CsiNet learns a transformation from CSI to a near-optimal number of representations (or codewords) and an inverse transformation from codewords to CSI. We perform experiments to demonstrate that CsiNet can recover CSI with significantly improved reconstruction quality compared with existing compressive sensing (CS)-based methods. Even at excessively low compression regions where CS-based methods cannot work, CsiNet retains effective beamforming gain.
引用
收藏
页码:748 / 751
页数:4
相关论文
共 50 条
  • [31] Vector Quantization for Deep-Learning-Based CSI Feedback in Massive MIMO Systems
    Shin, Junyong
    Kang, Yujin
    Jeon, Yo-Seb
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (09) : 2382 - 2386
  • [32] Binarized Aggregated Network With Quantization: Flexible Deep Learning Deployment for CSI Feedback in Massive MIMO Systems
    Lu, Zhilin
    Zhang, Xudong
    He, Hongyi
    Wang, Jintao
    Song, Jian
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (07) : 5514 - 5525
  • [33] Deep Learning-Based Cooperative CSI Feedback via Multiple Receiving Antennas in Massive MIMO
    Liang, Xin
    Shen, Jinghan
    Chang, Haoran
    Gu, Xinyu
    Zhang, Lin
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1373 - 1378
  • [34] CSI-PPPNet: A One-Sided One-for-All Deep Learning Framework for Massive MIMO CSI Feedback
    Chen, Wei
    Wan, Weixiao
    Wang, Shiyue
    Sun, Peng
    Li, Geoffrey Ye
    Ai, Bo
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7599 - 7611
  • [35] Zone-Specific CSI Feedback for Massive MIMO: A Situation-Aware Deep Learning Approach
    Zhang, Yu
    Alkhateeb, Ahmed
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (12) : 3320 - 3324
  • [36] A Novel Compression CSI Feedback based on Deep Learning for FDD Massive MIMO Systems
    Wang, Yuting
    Zhang, Yibin
    Sun, Jinlong
    Gui, Guan
    Ohtsuki, Tomoaki
    Adachi, Fumiyuki
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [37] Deep Transfer Learning for 5G Massive MIMO Downlink CSI Feedback
    Zeng, Jun
    He, Zhengran
    Sun, Jinlong
    Adebisi, Bamidele
    Gacanin, Haris
    Gui, Guan
    Adachi, Fumiyuki
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [38] Attention Model for Massive MIMO CSI Compression Feedback and Recovery
    Cai, Qiuyu
    Dong, Chao
    Niu, Kai
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [39] Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO
    Cao, Zheng
    Shih, Wan-Ting
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (08) : 2624 - 2628
  • [40] Variational AutoEncoder Based CSI Feedback for Massive MIMO Systems
    Swain, Anusaya
    Hiremath, Shrishail M.
    Patra, Sarat Kumar
    WIRELESS PERSONAL COMMUNICATIONS, 2023,