Three-dimensional head-direction coding in the bat brain

被引:176
作者
Finkelstein, Arseny [1 ]
Derdikman, Dori [1 ,2 ,3 ]
Rubin, Alon [1 ]
Foerster, Jakob N. [1 ]
Las, Liora [1 ]
Ulanovsky, Nachum [1 ]
机构
[1] Weizmann Inst Sci, Dept Neurobiol, IL-76100 Rehovot, Israel
[2] Technion Israel Inst Technol, Rappaport Fac Med, IL-31096 Haifa, Israel
[3] Technion Israel Inst Technol, Res Inst, IL-31096 Haifa, Israel
基金
以色列科学基金会; 欧洲研究理事会;
关键词
MEDIAL ENTORHINAL CORTEX; HIPPOCAMPAL PLACE CELLS; FREELY MOVING RATS; GRID CELLS; SPATIAL REPRESENTATION; ECHOLOCATING BATS; PATH-INTEGRATION; VERTICAL PLANE; COGNITIVE MAP; DYNAMICS;
D O I
10.1038/nature14031
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Navigation requires a sense of direction ('compass'), which in mammals is thought to be provided by head-direction cells, neurons that discharge when the animal's head points to a specific azimuth. However, it remains unclear whether a three-dimensional (3D) compass exists in the brain. Here we conducted neural recordings in bats, mammals well-adapted to 3D spatial behaviours, and found head-direction cells tuned to azimuth, pitch or roll, or to conjunctive combinations of 3D angles, in both crawling and flying bats. Head-direction cells were organized along a functional-anatomical gradient in the presubiculum, transitioning from 2D to 3D representations. In inverted bats, the azimuth-tuning of neurons shifted by 180 degrees, suggesting that 3D head direction is represented in azimuth x pitch toroidal coordinates. Consistent with our toroidal model, pitch-cell tuning was unimodal, circular, and continuous within the available 360 degrees of pitch. Taken together, these results demonstrate a 3D head-direction mechanism in mammals, which could support navigation in 3D space.
引用
收藏
页码:159 / U65
页数:25
相关论文
共 60 条
[11]  
Calton JL, 2003, J NEUROSCI, V23, P9719
[12]   All Layers of Medial Entorhinal Cortex Receive Presubicular and Parasubicular Inputs [J].
Canto, Cathrin B. ;
Koganezawa, Noriko ;
Beed, Prateep ;
Moser, Edvard I. ;
Witter, Menno P. .
JOURNAL OF NEUROSCIENCE, 2012, 32 (49) :17620-17631
[13]  
Gallistel C. R., 1990, The organization of learning
[14]   Microstructure of a spatial map in the entorhinal cortex [J].
Hafting, T ;
Fyhn, M ;
Molden, S ;
Moser, MB ;
Moser, EI .
NATURE, 2005, 436 (7052) :801-806
[15]   Intracellular dynamics of hippocampal place cells during virtual navigation [J].
Harvey, Christopher D. ;
Collman, Forrest ;
Dombeck, Daniel A. ;
Tank, David W. .
NATURE, 2009, 461 (7266) :941-U196
[16]   Anisotropic encoding of three-dimensional space by place cells and grid cells [J].
Hayman, Robin ;
Verriotis, Madeleine A. ;
Jovalekic, Aleksandar ;
Fenton, Andre A. ;
Jeffery, Kathryn J. .
NATURE NEUROSCIENCE, 2011, 14 (09) :1182-U244
[17]   Organization of connectivity of the rat presubiculum: I. Efferent projections to the medial entorhinal cortex [J].
Honda, Y ;
Ishizuka, N .
JOURNAL OF COMPARATIVE NEUROLOGY, 2004, 473 (04) :463-484
[18]   Kinematics of slow turn maneuvering in the fruit bat Cynopterus brachyotis [J].
Iriarte-Diaz, Jose ;
Swartz, Sharon M. .
JOURNAL OF EXPERIMENTAL BIOLOGY, 2008, 211 (21) :3478-3489
[19]   Direct recordings of grid-like neuronal activity in human spatial navigation [J].
Jacobs, Joshua ;
Weidemann, Christoph T. ;
Miller, Jonathan F. ;
Solway, Alec ;
Burke, John F. ;
Wei, Xue-Xin ;
Suthana, Nanthia ;
Sperling, Michael R. ;
Sharan, Ashwini D. ;
Fried, Itzhak ;
Kahana, Michael J. .
NATURE NEUROSCIENCE, 2013, 16 (09) :1188-1190
[20]   Navigating in a three-dimensional world [J].
Jeffery, Kathryn J. ;
Jovalekic, Aleksandar ;
Verriotis, Madeleine ;
Hayman, Robin .
BEHAVIORAL AND BRAIN SCIENCES, 2013, 36 (05) :523-543