High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nanopatterning

被引:32
作者
Ahn, Changui [1 ]
Park, Junyong [2 ]
Cho, Donghwi [3 ]
Hyun, Gayea [3 ]
Ham, Youngjin [3 ]
Kim, Kisun [3 ]
Nam, Sang-Hyeon [3 ]
Bae, Gwangmin [3 ]
Lee, Kisung [3 ]
Shim, Young-Seok [3 ]
Ang, Jade Nadine S. [3 ]
Jeon, Seokwoo [3 ]
机构
[1] Korea Inst Ceram Engn & Technol, Engn Ceram Ctr, Icheon 17303, Gyeonggi, South Korea
[2] Kumoh Natl Inst Technol, Sch Mat Sci & Engn, Gumi 39177, Gyeongbuk, South Korea
[3] Korea Adv Inst Sci & Technol, Inst Nanocentury, Dept Mat Sci & Engn, Daejeon 34141, South Korea
来源
FUNCTIONAL COMPOSITES AND STRUCTURES | 2019年 / 1卷 / 03期
基金
新加坡国家研究基金会;
关键词
functional nanocomposites; proximity-field nanopatterning; materials conversion; 3D continuous and ordered nanostructures; high-performance applications;
D O I
10.1088/2631-6331/ab3692
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Functional nanocomposites have attracted great attention in a variety of fields of application including energy harvesting (or storage) devices, structural materials, heat-dissipating materials and many others due to their controllable material properties (e.g. mechanical, thermal, electrical, and optical). However, conventional solid or porous nanocomposites based on nanoparticle-type materials have significant problems such as a high aggregation tendency, low percolation ratio and low mass transport, which cause a fatal degradation of the mechanical, thermal and electrical performance. Therefore, here we focus on unconventional nanocomposites using 3D continuous and ordered nanostructures to overcome the aforementioned issues. The 3D ordered and continuous nanostructures ensure excellent dispersion, conduction and efficient mass transport properties, resulting in outstanding material properties of functional nanocomposites. In this review, useful fabrication techniques of the 3D functional nanocomposites using proximity-field nanopatterning, which is a reliable 3D patterning tool over a large area, will be summarized. Furthermore, we will introduce the 3D functional nanocomposite-based high-performance applications including a functional coating film, stretchable conductor, strain sensor and energy devices.
引用
收藏
页数:21
相关论文
共 135 条
[1]   Human Activity Analysis: A Review [J].
Aggarwal, J. K. ;
Ryoo, M. S. .
ACM COMPUTING SURVEYS, 2011, 43 (03)
[2]   Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes [J].
Ahmed, Bilal ;
Anjum, Dalaver H. ;
Gogotsi, Yury ;
Alshareef, Husam N. .
NANO ENERGY, 2017, 34 :249-256
[3]   Multifunctional Polymer Nanocomposites Reinforced by 3D Continuous Ceramic Nanofillers [J].
Ahn, Changui ;
Kim, Sang-Min ;
Jung, Jae-Wook ;
Park, Junyong ;
Kim, Taegeon ;
Lee, Sang Eon ;
Jang, Dongchan ;
Hong, Jung-Wuk ;
Han, Seung Min ;
Jeon, Seokwoo .
ACS NANO, 2018, 12 (09) :9126-9133
[4]   Monolithic 3D titania with ultrathin nanoshell structures for enhanced photocatalytic activity and recyclability [J].
Ahn, Changui ;
Park, Junyong ;
Kim, Donghyuk ;
Jeon, Seokwoo .
NANOSCALE, 2013, 5 (21) :10384-10389
[5]   Atomic Layer Deposition of Inorganic Thin Films on 3D Polymer Nanonetworks [J].
Ahn, Jinseong ;
Ahn, Changui ;
Jeon, Seokwoo ;
Park, Junyong .
APPLIED SCIENCES-BASEL, 2019, 9 (10)
[6]   Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites [J].
Amjadi, Morteza ;
Yoon, Yong Jin ;
Park, Inkyu .
NANOTECHNOLOGY, 2015, 26 (37)
[7]   Microassembly of semiconductor three-dimensional photonic crystals [J].
Aoki, K ;
Miyazaki, HT ;
Hirayama, H ;
Inoshita, K ;
Baba, T ;
Sakoda, K ;
Shinya, N ;
Aoyagi, Y .
NATURE MATERIALS, 2003, 2 (02) :117-121
[8]   Fabrication of Nanoshell-Based 3D Periodic Structures by Templating Process using Solution-derived ZnO [J].
Araki, Shinji ;
Ishikawa, Yasuaki ;
Wang, Xudongfang ;
Uenuma, Mutsunori ;
Cho, Donghwi ;
Jeon, Seokwoo ;
Uraoka, Yukiharu .
NANOSCALE RESEARCH LETTERS, 2017, 12
[9]   Electrodeposited 3D Tungsten Photonic Crystals with Enhanced Thermal Stability [J].
Arpin, Kevin A. ;
Losego, Mark D. ;
Braun, Paul V. .
CHEMISTRY OF MATERIALS, 2011, 23 (21) :4783-4788
[10]   Through silicon via copper electrodeposition for 3D integration [J].
Beica, Rozalia ;
Sharbono, Charles ;
Ritzdorf, Tom .
58TH ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE, PROCEEDINGS, 2008, :577-+