An endpoint estimate for the Kunze-Stein phenomenon and related maximal operators

被引:35
作者
Ionescu, AD [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
关键词
D O I
10.2307/2661383
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One of the purposes of this paper is to prove that if G is a noncompact connected semisimple Lie group of real rank one with finite center, then L-2,L-1(G)*L-2,L-1(G) subset of or equal to L-2,L-infinity(G). Let K be a maximal compact subgroup of G and X = G/K a symmetric space of real rank one. We will also prove that the noncentered maximal operator M(2)f(z) = sup(z epsilonB)1//B/ integral (B)/f(z')/dz' is bounded from L-2,L-1(X) to L-2,L-infinity(X) and from L-P(X) to L-P(X) in the sharp range of exponents p epsilon (2, infinity]. The supremum in the definition of M(2)f(z) is taken over all balls. containing the point z.
引用
收藏
页码:259 / 275
页数:17
相关论文
共 13 条
[1]   LP FOURIER MULTIPLIERS ON RIEMANNIAN SYMMETRICAL SPACES OF THE NONCOMPACT TYPE [J].
ANKER, JP .
ANNALS OF MATHEMATICS, 1990, 132 (03) :597-628
[2]   LP-MULTIPLIERS FOR NONCOMPACT SYMMETRIC SPACES [J].
CLERC, JL ;
STEIN, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974, 71 (10) :3911-3912
[3]  
CORDOBA A, 1975, ANN MATH, V102
[4]   KUNZE-STEIN PHENOMENON [J].
COWLING, M .
ANNALS OF MATHEMATICS, 1978, 107 (02) :209-234
[5]  
COWLING M, 1996, CMS C P, V21, P73
[6]  
Helgason S., 2008, Mathematical Surveys and Monographs, V39
[7]  
Ionescu AD, 2000, MATH RES LETT, V7, P83
[8]  
Koornwinder T. H., 1984, SPECIAL FUNCTIONS GR, P1
[9]   UNIFORMLY BOUNDED REPRESENTATIONS AND HARMONIC ANALYSIS OF THE 2X2 REAL UNIMODULAR GROUP [J].
KUNZE, RA ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1960, 82 (01) :1-62
[10]   SOME FUNCTION-SPACES ON SYMMETRIC-SPACES RELATED TO CONVOLUTION-OPERATORS [J].
LOHOUE, N ;
RYCHENER, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 55 (02) :200-219