Electrodynamics-molecular dynamics simulations of the stability of Cu nanotips under high electric field

被引:17
|
作者
Veske, Mihkel [1 ,2 ,3 ]
Parviainen, Stefan [1 ,2 ]
Zadin, Vahur [1 ,2 ,3 ]
Aabloo, Alvo [3 ]
Djurabekova, Flyura [1 ,2 ]
机构
[1] Univ Helsinki, Dept Phys, POB 43,Pietari Kalmin Katu 2, FIN-00014 Helsinki, Finland
[2] Univ Helsinki, Helsinki Inst Phys, POB 43,Pietari Kalmin Katu 2, FIN-00014 Helsinki, Finland
[3] Univ Tartu, Inst Technol, Intelligent Mat & Syst Lab, Nooruse 1, EE-50411 Tartu, Estonia
基金
芬兰科学院;
关键词
shape memory effect; pseudoelasticity; electrodynamics; molecular dynamics; high electric field; field emission current; Cu nanotips; SURFACE;
D O I
10.1088/0022-3727/49/21/215301
中图分类号
O59 [应用物理学];
学科分类号
摘要
The shape memory effect and pseudoelasticity in Cu nanowires represent a possible pair of mechanisms that prevents high aspect ratio nanosized field electron emitters from being stable at room temperature and permits their growth under high electric field. By utilizing hybrid electrodynamics-molecular dynamics simulations, we show that a global electric field of 1 GV m(-1) or more significantly increases the stability and critical temperature of spontaneous reorientation of nanosized < 100 > Cu field emitters. We also show that in the studied tips the stabilizing effect of an external applied electric field is an order of magnitude greater than the destabilization caused by the field emission current. We detect the critical temperature of spontaneous reorientation using a tool that spots changes in crystal structure. The method is compatible with techniques that consider the change in potential energy, has a wider range of applicability and allows different stages in the reorientation processes to be pinpointed.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Molecular Dynamics Study of Cellulose Nanofiber Alignment under an Electric Field
    Muthoka, Ruth M.
    Panicker, Pooja S.
    Kim, Jaehwan
    POLYMERS, 2022, 14 (09)
  • [12] Reactive and electron force field molecular dynamics simulations of electric field assisted ethanol oxidation reactions
    Jiang, Xi Zhuo
    Luo, Kai Hong
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (04) : 6605 - 6613
  • [13] Electronic processes in molecular dynamics simulations of nanoscale metal tips under electric fields
    Parviainen, S.
    Djurabekova, F.
    Timko, H.
    Nordlund, K.
    COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (07) : 2075 - 2079
  • [14] TUPA: Electric field analyses for molecular simulations
    Poleto, Marcelo D.
    Lemkul, Justin A.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2022, 43 (16) : 1113 - 1119
  • [15] Molecular dynamics simulation of liquid methanol under the influence of an external electric field
    Sun, W
    Chen, Z
    Huang, SY
    FLUID PHASE EQUILIBRIA, 2005, 238 (01) : 20 - 25
  • [16] Molecular dynamics simulation of liquid water under the influence of an external electric field
    Wei, S
    Zhong, C
    Su-Yi, H
    MOLECULAR SIMULATION, 2005, 31 (08) : 555 - 559
  • [17] WATER THERMODYNAMIC BEHAVIOR UNDER INFLUENCE OF ELECTRIC FIELD: A MOLECULAR DYNAMICS STUDY
    Porterfield, Malcolm
    Borca-Tasciuc, Diana
    PROCEEDINGS OF ASME 2022 HEAT TRANSFER SUMMER CONFERENCE, HT2022, 2022,
  • [18] Molecular dynamics study of sessile ionic nanodroplet under external electric field
    Chatterjee, Shilpi
    Hens, Abhiram
    Ghanta, Kartik Chandra
    Biswas, Gautam
    CHEMICAL ENGINEERING SCIENCE, 2021, 229
  • [19] Effect of droplet angle on droplet coalescence under high-frequency pulsed electric fields: Experiments and molecular dynamics simulations
    Sun, Zhiqian
    Li, Ning
    Li, Wangqing
    Weng, Shuo
    Liu, Tianhao
    Wang, Zhenbo
    CHEMICAL ENGINEERING SCIENCE, 2024, 295
  • [20] Structure evolution of the silica glass under the vibration field through molecular dynamics simulations
    Wang, Feimei
    Liu, Jiawei
    Zhang, Yajiao
    Yan, Jingping
    Li, Boyuan
    Jiang, Fangling
    Qian, Min
    Deng, Lu
    Yu, Chunlei
    Hu, Lili
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (12) : 7825 - 7835