Cryogenic Characterization of 28-nm FD-SOI Ring Oscillators With Energy Efficiency Optimization

被引:29
作者
Bohuslavskyi, H. [1 ]
Barraud, S. [1 ]
Barral, V. [1 ]
Casse, M. [1 ]
Le Guevel, L. [1 ]
Hutin, L. [1 ]
Bertrand, B. [1 ]
Crippa, A. [2 ]
Jehl, X. [2 ]
Pillonnet, G. [1 ]
Jansen, A. G. M. [2 ]
Arnaud, F. [3 ]
Galy, P. [3 ]
Maurand, R. [2 ]
De Franceschi, S. [2 ]
Sanquer, M. [2 ]
Vinet, M. [1 ]
机构
[1] CEA, LETI, Minatec Campus, F-38054 Grenoble, France
[2] Univ Grenoble Alpes, CEA, INAC, PHELIQS, F-38054 Grenoble, France
[3] STMicroelectronics, F-38920 Crolles, France
关键词
28 nm fully depleted silicon-on-insulator (FD-SOI); body biasing; cryogenic electronics; quantum computing; ring oscillator (RO); ultralow power; QUANTUM COMPUTATION; CMOS; SILICON;
D O I
10.1109/TED.2018.2859636
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Extensive electrical characterization of ring oscillators (ROs) made in high-kappa metal gate 28-nm fully depleted silicon-on-insulator technology is presented for a set of temperatures between 296 and 4.3 K. First, delay per stage (tau(P)), static current (I-STAT), and dynamic current (I-DYN) are analyzed for the case of the increase of threshold voltage (V-TH) observed at low temperature. Then, the same analysis is performed by compensating V-TH to a constant, temperature-independent value through forward body biasing (FBB). Energy efficiency optimization is proposed for different supply voltages (V-DD) in order to find an optimal operating point combining both high RO frequencies and low-power dissipation. We show that the Energy-Delay product can be significantly reduced at low temperature by applying an FBB voltage (V-FBB). We demonstrate that outstanding performance of RO in terms of speed (tau(P) = 37 ps) and static current (7nA/stage) can be achieved at 4.3 K with V-DD reduced down to 0.325 V.
引用
收藏
页码:3682 / 3688
页数:7
相关论文
共 26 条
[1]  
[Anonymous], 2018, 2018 JT INT EUROSOI, DOI DOI 10.1109/ULIS.2018.8354742
[2]  
Beigne E, 2015, PROC EUR S-STATE DEV, P164, DOI 10.1109/ESSDERC.2015.7324739
[3]  
Bhushan M., 2015, CMOS METRICS MODEL E, P347
[4]  
Bohuslavskyi H, 2017, IEEE SILICON NANOELE, P143, DOI 10.23919/SNW.2017.8242338
[5]  
Charbon E, 2016, INT EL DEVICES MEET
[6]   Design and Cryogenic Operation of a Hybrid Quantum-CMOS Circuit [J].
Clapera, P. ;
Ray, S. ;
Jehl, X. ;
Sanquer, M. ;
Valentian, A. ;
Barraud, S. .
PHYSICAL REVIEW APPLIED, 2015, 4 (04)
[7]  
Gutierrez D. EA, 2001, Low Temp. Electron., P105, DOI [10.1016/B978-012310675-9/50003-7, DOI 10.1016/B978-012310675-9/50003-7]
[8]   The Cryogenic Temperature Behavior of Bipolar, MOS, and DTMOS Transistors in Standard CMOS [J].
Homulle, Harald ;
Song, Lin ;
Charbon, Edoardo ;
Sebastiano, Fabio .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2018, 6 (01) :263-270
[9]  
Homulle H, 2017, 2017 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE TECHNOLOGY (ICFPT), P25, DOI 10.1109/FPT.2017.8280117
[10]  
Hutin L., 2016, 2016 IEEE S VLSI TEC, P1, DOI [10.1109/VLSIT.2016.7573380, DOI 10.1109/VLSIT.2016.7573380]