A lifting line model to investigate the influence of tip feathers on wing performance

被引:24
作者
Fluck, M. [1 ]
Crawford, C. [1 ]
机构
[1] Univ Victoria, Inst Integrated Energy Syst IESVic, Dept Mech Engn, Victoria, BC V8W 2Y2, Canada
关键词
bird wing tip feathers; winglets; lifting line model; drag reduction; wing efficiency; SLOTS; REDUCTION; SHAPE; HAWK; DRAG;
D O I
10.1088/1748-3182/9/4/046017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bird wings have been studied as prototypes for wing design since the beginning of aviation. Although wing tip slots, i.e. wings with distinct gaps between the tip feathers (primaries), are very common in many birds, only a few studies have been conducted on the benefits of tip feathers on the wing's performance, and the aerodynamics behind tip feathers remains to be understood. Consequently most aircraft do not yet copy this feature. To close this knowledge gap an extended lifting line model was created to calculate the lift distribution and drag of wings with tip feathers. With this model, is was easily possible to combine several lifting surfaces into various different birdwing-like configurations. By including viscous drag effects, good agreement with an experimental tip slotted reference case was achieved. Implemented in C++ this model resulted in computation times of less than one minute per wing configuration on a standard notebook computer. Thus it was possible to analyse the performance of over 100 different wing configurations with and without tip feathers. While generally an increase in wing efficiency was obtained by splitting a wing tip into distinct, feather-like winglets, the best performance was generally found when spreading more feathers over a larger dihedral angle out of the wing plane. However, as the results were very sensitive to the precise geometry of the feather fan (especially feather twist) a careless set-up could just as easily degrade performance. Hence a detailed optimization is recommended to realize the full benefits by simultaneously optimizing feather sweep, twist and dihedral angles.
引用
收藏
页数:10
相关论文
共 24 条
[1]  
Cosin R, 2009, BRAZ S AER ENG APPL
[2]  
Hoerner S., 1952, 5752 US AIR FORC
[3]  
Hossain A, 2011, INT J AEROSP MECH EN, V5, P30
[4]  
Hummel D, 1980, P 17 INT ORN C, V1, P391
[5]  
Kirk P S, 1995, US Patent, Patent No. [5 407 153, 7900876, 7 900 876]
[6]   Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration [J].
Lockwood, R ;
Swaddle, JP ;
Rayner, JMV .
JOURNAL OF AVIAN BIOLOGY, 1998, 29 (03) :273-292
[7]  
Munk M.M., 1923, 121 NACA
[8]  
Nagel F, 1924, VORLAUFIGE MITTEILUN
[9]  
Norberg U.M., 2012, Vertebrate flight: mechanics, physiology, morphology, ecology and evolution, V27
[10]  
NWTC Computer-Aided Engineering Tools (AirfoilPrep by Dr Craig Hansen), 1995, [No title captured], Patent No. [5407153, 5 407 153]