LIGHT SELF-LOCALIZATION IN NEMATIC LIQUID CRYSTALS: MODELLING SOLITONS IN NONLOCAL REORIENTATIONAL MEDIA

被引:45
作者
Assanto, Gaetano [1 ,2 ]
Minzoni, Antonmaria A. [3 ]
Smyth, Noel F. [4 ,5 ]
机构
[1] CNISM, Dept Elect Engn, NooEL Nonlinear Opt & Optoelect Lab, I-00146 Rome, Italy
[2] Univ Rome Roma Tre, I-00146 Rome, Italy
[3] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Dept Math & Mech, Fenomenos Nonlineales & Mecan FENOMEC, Mexico City 01000, DF, Mexico
[4] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[5] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Spatial solitons; nonlinear guided waves; liquid crystals; nonlinear waves; modulation theory; SPATIAL SOLITONS; VORTEX SOLITONS; PROPAGATION;
D O I
10.1142/S0218863509004968
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We review the mathematical modelling of propagation and specific interactions of solitary beams in nematic liquid crystals - so-called nematicons. The theory is first developed for the evolution of a single nematicon; then it is extended to the interaction of two nematicons of different wavelengths, employing linear momentum conservation equations to predict that two colour nematicons can form a vector bound state. Considering optical vortices, we show that the nonlocal response of liquid crystals stabilises a single vortex, unstable in local media. Moreover, the interaction with a nematicon in another colour can stabilise a vortex for nonlocalities far below those at which an isolated vortex remains unstable. When multiple nematicons of the same wavelength interact, the radiation they shed can join them together, still resulting in a vortex. Finally, we discuss the escape of a nematicon from a nonlinear waveguide, using simple modulation theory based on momentum conservation to model the effect and get excellent agreement with the experimental results.
引用
收藏
页码:657 / 691
页数:35
相关论文
共 46 条
[1]   Two-color vector solitons in nonlocal media [J].
Alberucci, Alessandro ;
Peccianti, Marco ;
Assanto, Gaetano ;
Dyadyusha, Andriy ;
Kaczmarek, Malgosia .
PHYSICAL REVIEW LETTERS, 2006, 97 (15)
[2]  
[Anonymous], 2003, Optical Solitons
[3]  
[Anonymous], 1965, Handbook of mathematical functions dover publications
[4]   Nematicons and their angular steering [J].
Assanto, G ;
Umeton, C ;
Peccianti, M ;
Alberucci, A .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2006, 15 (01) :33-42
[5]   Nonlinear wave propagation and spatial solitons in nematic liquid crystals [J].
Assanto, G ;
Peccianti, M ;
Brzdakiewicz, KA ;
De Luca, A ;
Umeton, C .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2003, 12 (02) :123-134
[6]  
Assanto G, 2003, OPT PHOTONICS NEWS, V14, P44, DOI 10.1364/OPN.14.2.000044
[7]   Spatial solitons in nematic liquid crystals [J].
Assanto, G ;
Peccianti, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2003, 39 (01) :13-21
[8]  
ASSANTO G, LAGRANGE SOLUT UNPUB
[9]   Two-color, nonlocal vector solitary waves with angular momentum in nematic liquid crystals [J].
Assanto, Gaetano ;
Smyth, Noel F. ;
Worthy, Annette L. .
PHYSICAL REVIEW A, 2008, 78 (01)
[10]   Routing light at will [J].
Assanto, Gaetano ;
Peccianti, Marco .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2007, 16 (01) :37-47