An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases

被引:222
|
作者
Austin, MB
Bowman, ME
Ferrer, JL
Schröder, J
Noel, JP
机构
[1] Salk Inst Biol Studies, Struct Biol Lab, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92037 USA
[3] IBS JP Ebel, F-38027 Grenoble 1, France
[4] Univ Freiburg, Inst Biol 2 Biochem Pflanzen, D-79104 Freiburg, Germany
来源
CHEMISTRY & BIOLOGY | 2004年 / 11卷 / 09期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1016/j.chembiol.2004.05.024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Stilbene synthase (STS) and chalcone synthase (CHS) each catalyze the formation of a tetraketide intermediate from a CoA-tethered phenylpropanoid starter and three molecules of malonyl-CoA, but use different cyclization mechanisms to produce distinct chemical scaffolds for a variety of plant natural products. Here we present the first STS crystal structure and identify, by mutagenic conversion of alfalfa CHS into a functional stilbene synthase, the structural basis for the evolution of STS cyclization specificity in type III polyketide synthase (PKS) enzymes. Additional mutagenesis and enzymatic characterization confirms that electronic effects rather than steric factors balance competing cyclization specificities in CHS and STS. Finally, we discuss the problematic in vitro reconstitution of plant stilbenecarboxylate pathways, using insights from existing biomimetic polyketide cyclization studies to generate a novel mechanistic hypothesis to explain stilbenecarboxylate biosynthesis.
引用
收藏
页码:1179 / 1194
页数:16
相关论文
共 50 条
  • [21] Functional Versatility of Mycobacterium marinum Type III Polyketide Synthases
    Saxena, Priti
    Parvez, Amreesh
    Giri, Samir
    Giri, Gorkha R.
    Kumari, Monika
    Bisht, Renu
    MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (08) : S72 - S72
  • [22] A comprehensive and engaging overview of the type III family of polyketide synthases
    Watanabe, Kenji
    Praseuth, Alex P.
    Wang, Clay C. C.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2007, 11 (03) : 279 - 286
  • [23] A diverse family of type III polyketide synthases in Eucalyptus species
    Rubin-Pitel, Sheryl B.
    Luo, Yunzi
    Lee, Jung-Kul
    Zhao, Huimin
    MOLECULAR BIOSYSTEMS, 2010, 6 (08) : 1444 - 1446
  • [24] The structures of type I polyketide synthases
    Keatinge-Clay, Adrian T.
    NATURAL PRODUCT REPORTS, 2012, 29 (10) : 1050 - 1073
  • [25] FUNGAL TYPE I POLYKETIDE SYNTHASES
    Cox, Russell J.
    Simpson, Thomas J.
    COMPLEX ENZYMES IN MICROBIAL NATURAL PRODUCT BIOSYNTHESIS, PART B: POLYKETIDES, AMINOCOUMARINS AND CARBOHYDRATES, 2009, 459 : 49 - 78
  • [26] Discovery of a novel superfamily of type III polyketide synthases in Aspergillus oryzae
    Seshime, Y
    Juvvadi, PR
    Fujii, I
    Kitamoto, K
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 331 (01) : 253 - 260
  • [27] Structurally guided alteration of biosynthesis in plant type III polyketide synthases
    Noel, JP
    Jez, JM
    Austin, MB
    Bowman, ME
    Ferrer, JL
    PHYTOCHEMISTRY IN THE GENOMICS AND POST-GENOMICS ERAS, 2002, 36 : 197 - 222
  • [28] Engineered biosynthesis of plant polyketides by type III polyketide synthases in microorganisms
    Liu, Chang
    Li, Sijin
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [29] Optimisation of a fungal bioluminescence system by plant type III polyketide synthases
    Palkina, K. A.
    Markina, N. M.
    Sarkisyan, K. S.
    Yampolsky, I. V.
    JOURNAL OF BIOTECHNOLOGY, 2019, 305 : S50 - S50
  • [30] The role of oxyanion holes in the structure and function of type III polyketide synthases
    Stewart, Charles
    Noel, Joseph
    FASEB JOURNAL, 2014, 28 (01):