The Validation of Deep Learning-Based Grading Model for Diabetic Retinopathy

被引:13
作者
Zhang, Wen-fei [1 ,2 ]
Li, Dong-hong [3 ]
Wei, Qi-jie [3 ]
Ding, Da-yong [3 ]
Meng, Li-hui [1 ,2 ]
Wang, Yue-lin [1 ,2 ]
Zhao, Xin-yu [1 ,2 ]
Chen, You-xin [1 ,2 ]
机构
[1] Chinese Acad Med Sci, Peking Union Med Coll Hosp, Dept Ophthalmol, Beijing, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Key Lab Ocular Fundus Dis, Beijing, Peoples R China
[3] Visionary Intelligence Ltd, Beijing, Peoples R China
关键词
diabetic retinopathy; artificial intelligence; validation; eye wisdom V1; sensitivity; specificity; FUNDUS PHOTOGRAPHY; PREVALENCE; CHINA;
D O I
10.3389/fmed.2022.839088
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
PurposeTo evaluate the performance of a deep learning (DL)-based artificial intelligence (AI) hierarchical diagnosis software, EyeWisdom V1 for diabetic retinopathy (DR). Materials and MethodsThe prospective study was a multicenter, double-blind, and self-controlled clinical trial. Non-dilated posterior pole fundus images were evaluated by ophthalmologists and EyeWisdom V1, respectively. The diagnosis of manual grading was considered as the gold standard. Primary evaluation index (sensitivity and specificity) and secondary evaluation index like positive predictive values (PPV), negative predictive values (NPV), etc., were calculated to evaluate the performance of EyeWisdom V1. ResultsA total of 1,089 fundus images from 630 patients were included, with a mean age of (56.52 +/- 11.13) years. For any DR, the sensitivity, specificity, PPV, and NPV were 98.23% (95% CI 96.93-99.08%), 74.45% (95% CI 69.95-78.60%), 86.38% (95% CI 83.76-88.72%), and 96.23% (95% CI 93.50-98.04%), respectively; For sight-threatening DR (STDR, severe non-proliferative DR or worse), the above indicators were 80.47% (95% CI 75.07-85.14%), 97.96% (95% CI 96.75-98.81%), 92.38% (95% CI 88.07-95.50%), and 94.23% (95% CI 92.46-95.68%); For referral DR (moderate non-proliferative DR or worse), the sensitivity and specificity were 92.96% (95% CI 90.66-94.84%) and 93.32% (95% CI 90.65-95.42%), with the PPV of 94.93% (95% CI 92.89-96.53%) and the NPV of 90.78% (95% CI 87.81-93.22%). The kappa score of EyeWisdom V1 was 0.860 (0.827-0.890) with the AUC of 0.958 for referral DR. ConclusionThe EyeWisdom V1 could provide reliable DR grading and referral recommendation based on the fundus images of diabetics.
引用
收藏
页数:10
相关论文
共 28 条
[1]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[2]   Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning [J].
Abramoff, Michael David ;
Lou, Yiyue ;
Erginay, Ali ;
Clarida, Warren ;
Amelon, Ryan ;
Folk, James C. ;
Niemeijer, Meindert .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5200-5206
[3]   Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey [J].
Asiri, Norah ;
Hussain, Muhammad ;
Al Adel, Fadwa ;
Alzaidi, Nazih .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 99
[4]   Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study [J].
Bellemo, Valentina ;
Lim, Zhan W. ;
Lim, Gilbert ;
Nguyen, Quang D. ;
Xie, Yuchen ;
Yip, Michelle Y. T. ;
Hamzah, Haslina ;
Ho, Jinyi ;
Lee, Xin Q. ;
Hsu, Wynne ;
Lee, Mong L. ;
Musonda, Lillian ;
Chandran, Manju ;
Chipalo-Mutati, Grace ;
Muma, Mulenga ;
Tan, Gavin S. W. ;
Sivaprasad, Sobha ;
Menon, Geeta ;
Wong, Tien Y. ;
Ting, Daniel S. W. .
LANCET DIGITAL HEALTH, 2019, 1 (01) :E35-E44
[5]   IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 [J].
Cho, N. H. ;
Shaw, J. E. ;
Karuranga, S. ;
Huang, Y. ;
Fernandes, J. D. da Rocha ;
Ohlrogge, A. W. ;
Malanda, B. .
DIABETES RESEARCH AND CLINICAL PRACTICE, 2018, 138 :271-281
[6]   Optical Coherence Tomography Angiography in Diabetes and Diabetic Retinopathy [J].
Chua, Jacqueline ;
Sim, Ralene ;
Tan, Bingyao ;
Wong, Damon ;
Yao, Xinwen ;
Liu, Xinyu ;
Ting, Daniel S. W. ;
Schmidl, Doreen ;
Ang, Marcus ;
Garhoefer, Gerhard ;
Schmetterer, Leopold .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (06) :1-23
[7]  
Clopper CJ, 1934, BIOMETRIKA, V26, P404, DOI 10.2307/2331986
[8]   Performance of a Deep-Learning Algorithm vs Manual Grading for Detecting Diabetic Retinopathy in India [J].
Gulshan, Varun ;
Rajan, Renu P. ;
Widner, Kasumi ;
Wu, Derek ;
Wubbels, Peter ;
Rhodes, Tyler ;
Whitehouse, Kira ;
Coram, Marc ;
Corrado, Greg ;
Ramasamy, Kim ;
Raman, Rajiv ;
Peng, Lily ;
Webster, Dale R. .
JAMA OPHTHALMOLOGY, 2019, 137 (09) :987-993
[9]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778