The role of nanoparticle size and ligand coverage in size focusing of colloidal metal nanoparticles

被引:63
作者
Mozaffari, Saeed [1 ]
Li, Wenhui [1 ]
Dixit, Mudit [2 ]
Seifert, Soenke [3 ]
Lee, Byeongdu [4 ]
Kovarik, Libor [5 ]
Mpourmpakis, Giannis [2 ]
Karim, Ayman M. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24060 USA
[2] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA
[5] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
来源
NANOSCALE ADVANCES | 2019年 / 1卷 / 10期
基金
美国国家科学基金会;
关键词
KINETICALLY EFFECTIVE NUCLEUS; IN-SITU; PALLADIUM NANOPARTICLES; GOLD NANOPARTICLES; QUANTITATIVE-ANALYSIS; ADSORPTION ENERGY; NUCLEATION; GROWTH; NANOCRYSTALS; MECHANISM;
D O I
10.1039/c9na00348g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlling the size distribution of nanoparticles is important for many applications and typically involves the use of ligands during synthesis. In this study, we show that the mechanism of size focusing involves a dependence of the growth rate on the size of the nanoparticles and the ligand coverage on the surface of the nanoparticles. To demonstrate these effects, we used in situ small angle X-ray scattering (SAXS) and population balance kinetic modeling (PBM) to investigate the evolution of size distribution during the synthesis of colloidal Pd metal nanoparticles. Despite temporal overlap of nucleation and growth, our in situ SAXS show size focusing of the distribution under different synthetic conditions (different concentrations of metal and ligand as well as solvent type). To understand the mechanism of size focusing using PBM, we systematically studied how the evolution of the nanoparticle size distribution is affected by nucleation rate, and dependence of the growth rate constant on ligand surface coverage, and size of the nanoparticles. We show that continuous nucleation contributes to size defocusing. However, continuous nucleation results in different reaction times for the nanoparticle population leading to time and size-dependent ligand surface coverage. Using density functional theory (DFT) calculations and BrOnsted-Evans-Polanyi relations, we show that as the population grows, larger nanoparticles grow more slowly than smaller ones due to lower intrinsic activity and higher ligand coverage on the surface. Therefore, despite continuous nucleation, the faster growth of smaller nanoparticles in the population leads to size focusing. The size focusing behaviour (due to faster growth of smaller nanoparticles) was found to be model independent and similar results were demonstrated under different nucleation and growth pathways (e.g. growth via ion reduction on the surface and/or monomer addition). Our results provide a microscopic connection between kinetics and thermodynamics of nanoparticle growth and metal-ligand binding, and their effect on the size distribution of colloidal nanoparticles.
引用
收藏
页码:4052 / 4066
页数:15
相关论文
共 100 条
  • [1] Probing in situ the nucleation and growth of gold nanoparticles by small-angle x-ray scattering
    Abecassis, Benjamin
    Testard, Fabienne
    Spalla, Olivier
    Barboux, Philippe
    [J]. NANO LETTERS, 2007, 7 (06) : 1723 - 1727
  • [2] Gaining Control over Radiolytic Synthesis of Uniform Sub-3-nanometer Palladium Nanoparticles: Use of Aromatic Liquids in the Electron Microscope
    Abellan, Patricia
    Parent, Lucas R.
    Al Hasan, Naila
    Park, Chiwoo
    Arslan, Ilke
    Karim, Ayman M.
    Evans, James E.
    Browning, Nigel D.
    [J]. LANGMUIR, 2016, 32 (06) : 1468 - 1477
  • [3] Strongly emissive perovskite nanocrystal inks for high-voltage solar cells
    Akkerman, Quinten A.
    Gandini, Marina
    Di Stasio, Francesco
    Rastogi, Prachi
    Palazon, Francisco
    Bertoni, Giovanni
    Ball, James M.
    Prato, Mirko
    Petrozza, Annamaria
    Manna, Liberato
    [J]. NATURE ENERGY, 2017, 2 (02):
  • [4] Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals
    Aldana, J
    Lavelle, N
    Wang, YJ
    Peng, XG
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (08) : 2496 - 2504
  • [5] Chemisorption of CO and Mechanism of CO Oxidation on Supported Platinum Nanoclusters
    Allian, Ayman D.
    Takanabe, Kazuhiro
    Fujdala, Kyle L.
    Hao, Xianghon
    Truex, Timothy J.
    Cai, Juan
    Buda, Corneliu
    Neurock, Matthew
    Iglesia, Enrique
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (12) : 4498 - 4517
  • [6] [Anonymous], 2006, CHEM KINETICS MOL ST
  • [7] Investigation of Indium Phosphide Nanocrystal Synthesis Using a High-Temperature and High-Pressure Continuous Flow Microreactor
    Baek, Jinyoung
    Allen, Peter M.
    Bawendi, Moungi G.
    Jensen, Klavs F.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (03) : 627 - 630
  • [8] Bergeret G., 1997, Handbook of Heterogeneous Catalysis, V2, P439
  • [9] Chemistry and Structure of Silver Molecular Nanoparticles
    Bhattarai, Badri
    Zaker, Yeakub
    Atnagulov, Aydar
    Yoon, Bokwon
    Landman, Uzi
    Bigioni, Terry P.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (12) : 3104 - 3113
  • [10] Experimental Evaluation of Kinetic and Thermodynamic Reaction Parameters of Colloidal Nanocrystals
    Brauser, Eric M.
    Hull, Trevor D.
    McLennan, John D.
    Siy, Jacqueline T.
    Bartl, Michael H.
    [J]. CHEMISTRY OF MATERIALS, 2016, 28 (11) : 3831 - 3838