Inception neural network for complete intersection Calabi-Yau 3-folds

被引:13
作者
Erbin, H. [1 ]
Finotello, R.
机构
[1] Univ Torino, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 02期
关键词
Calabi-Yau manifold; deep learning; string theory compactification; algebraic topology;
D O I
10.1088/2632-2153/abda61
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a neural network inspired by Google's Inception model to compute the Hodge number h (1,1) of complete intersection Calabi-Yau (CICY) 3-folds. This architecture improves largely the accuracy of the predictions over existing results, giving already 97% of accuracy with just 30% of the data for training. Accuracy climbs to 99% when using 80% of the data for training. This proves that neural networks are a valuable resource to study geometric aspects in both pure mathematics and string theory.
引用
收藏
页数:9
相关论文
共 31 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Anderson L. B., 2018, PoS TASI2017
  • [3] Fibrations in CICY threefolds
    Anderson, Lara B.
    Gao, Xin
    Gray, James
    Lee, Seung-Joo
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (10):
  • [4] Machine Learning Line Bundle Cohomology
    Brodie, Callum R.
    Constantin, Andrei
    Deen, Rehan
    Lukas, Andre
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2020, 68 (01):
  • [5] Geometric Deep Learning Going beyond Euclidean data
    Bronstein, Michael M.
    Bruna, Joan
    LeCun, Yann
    Szlam, Arthur
    Vandergheynst, Pierre
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) : 18 - 42
  • [6] Getting CICY high
    Bull, Kieran
    He, Yang-Hui
    Jejjala, Vishnu
    Mishra, Challenger
    [J]. PHYSICS LETTERS B, 2019, 795 : 700 - 706
  • [7] Machine learning CICY threefolds
    Bull, Kieran
    He, Yang-Hui
    Jejjala, Vishnu
    Mishra, Challenger
    [J]. PHYSICS LETTERS B, 2018, 785 : 65 - 72
  • [8] COMPLETE INTERSECTION CALABI-YAU MANIFOLDS
    CANDELAS, P
    DALE, AM
    LUTKEN, CA
    SCHIMMRIGK, R
    [J]. NUCLEAR PHYSICS B, 1988, 298 (03) : 493 - 525
  • [9] Machine learning in the string landscape
    Carifio, Jonathan
    Halverson, James
    Krioukov, Dmitri
    Nelson, Brent D.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (09):
  • [10] Chollet F., 2015, Keras