New Robust Stability and Stabilization Conditions for Linear Repetitive Processes

被引:0
|
作者
Paszke, Wojciech [1 ]
Bachelier, Olivier [2 ]
机构
[1] Eindhoven Univ Technol, Control Syst Technol Grp, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Univ Poitiers, ESIP, LAII, F-86022 Poitiers, France
来源
NDS: 2009 INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS | 2009年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on the problem of robust stabilization for differential or discrete linear repetitive processes. The provided conditions allow us to involve parameter dependent Lyapunov functions. An additional flexibility in finding a solution is obtained by introducing slack matrix variables. A simulation example is given to illustrate the theoretical developments.
引用
收藏
页码:124 / +
页数:2
相关论文
共 50 条
  • [21] Stabilization of a class of uncertain "wave" discrete linear repetitive processes
    Galkowski, K.
    Cichy, B.
    Rogers, E.
    Lam, J.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 1437 - +
  • [22] Vector Lyapunov Functions for Stability and Stabilization of Differential Repetitive Processes
    Galkowski, K.
    Emelianov, M. A.
    Pakshin, P. V.
    Rogers, E.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2016, 55 (04) : 503 - 514
  • [23] Vector Lyapunov functions for stability and stabilization of differential repetitive processes
    K. Galkowski
    M. A. Emelianov
    P. V. Pakshin
    E. Rogers
    Journal of Computer and Systems Sciences International, 2016, 55 : 503 - 514
  • [24] Robust H∞ filtering for uncertain differential linear repetitive processes
    Wu, Ligang
    Lam, James
    Paszke, Wojciech
    Galkowski, Krzysztof
    Rogers, Eric
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2008, 22 (03) : 243 - 265
  • [25] Robust static output feedback control for linear repetitive processes
    Boski, Marcin
    Paszke, Wojciech
    2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS), 2017,
  • [26] Stability and stabilization of positive linear dynamical systems: new equivalent conditions and computations
    Yang, H.
    Hu, Y.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2020, 68 (02) : 307 - 315
  • [27] Stabilization of differential repetitive processes
    Emelianov, M. A.
    Pakshin, P. V.
    Gakowski, K.
    Rogers, E.
    AUTOMATION AND REMOTE CONTROL, 2015, 76 (05) : 786 - 800
  • [28] Stabilization of differential repetitive processes
    M. A. Emelianov
    P. V. Pakshin
    K. Gałkowski
    E. Rogers
    Automation and Remote Control, 2015, 76 : 786 - 800
  • [29] Roesser form of (wave) linear repetitive processes and structural stability
    Bachelier, Olivier
    Cluzeau, Thomas
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2278 - 2283
  • [30] Strong practical stability and control of discrete linear repetitive processes
    Dabkowski, P.
    Galkowski, K.
    Rogers, E.
    Kummert, A.
    2007 INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL SYSTEMS, 2007, : 149 - +