Native Cellulose: Structure, Characterization and Thermal Properties

被引:739
作者
Poletto, Matheus [1 ]
Ornaghi Junior, Heitor L. [1 ]
Zattera, Ademir J. [1 ]
机构
[1] UCS, Lab Polymers LPOL, BR-95070560 Caxias Do Sul, RS, Brazil
关键词
natural fibers; cellulose; crystallinity; XRD; FTIR; thermal stability; X-RAY-DIFFRACTION; CRYSTALLINE-STRUCTURE; PART I; DECOMPOSITION KINETICS; MECHANICAL-PROPERTIES; GAS CHROMATOGRAPHY; SODIUM-HYDROXIDE; NATURAL FIBERS; WOOD; COMPOSITES;
D O I
10.3390/ma7096105
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, the relationship between cellulose crystallinity, the influence of extractive content on lignocellulosic fiber degradation, the correlation between chemical composition and the physical properties of ten types of natural fibers were investigated by FTIR spectroscopy, X-ray diffraction and thermogravimetry techniques. The results showed that higher extractive contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the thermal stability of the lignocellulosic fibers studied. On the other hand, the thermal decomposition of natural fibers is shifted to higher temperatures with increasing the cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of natural fibers. This study showed that through the methods used, previous information about the structure and properties of lignocellulosic fibers can be obtained before use in composite formulations.
引用
收藏
页码:6105 / 6119
页数:15
相关论文
共 42 条
[1]   Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy [J].
Åkerholm, M ;
Hinterstoisser, B ;
Salmén, L .
CARBOHYDRATE RESEARCH, 2004, 339 (03) :569-578
[2]   Composites reinforced with cellulose based fibres [J].
Bledzki, AK ;
Gassan, J .
PROGRESS IN POLYMER SCIENCE, 1999, 24 (02) :221-274
[3]   Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres [J].
Carrillo, A ;
Colom, X ;
Sunol, JJ ;
Saurina, J .
EUROPEAN POLYMER JOURNAL, 2004, 40 (09) :2229-2234
[4]   Natural fibers characterization by inverse gas chromatography [J].
Cordeiro, N. ;
Gouveia, C. ;
Moraes, A. G. O. ;
Amico, S. C. .
CARBOHYDRATE POLYMERS, 2011, 84 (01) :110-117
[5]   Enzymatic Transformations of Cellulose Assessed by Quantitative High-Throughput Fourier Transform Infrared Spectroscopy (QHT-FTIR) [J].
Corgie, Stephane C. ;
Smith, Hanna M. ;
Walker, Larry P. .
BIOTECHNOLOGY AND BIOENGINEERING, 2011, 108 (07) :1509-1520
[7]   Biocomposites reinforced with natural fibers: 2000-2010 [J].
Faruk, Omar ;
Bledzki, Andrzej K. ;
Fink, Hans-Peter ;
Sain, Mohini .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (11) :1552-1596
[8]   The effects of various pulping conditions on crystalline structure of cellulose in cotton linters [J].
Gümüskaya, E ;
Usta, M ;
Kirci, H .
POLYMER DEGRADATION AND STABILITY, 2003, 81 (03) :559-564
[9]   Effect of Acid Hydrolysis Conditions on the Properties of Cellulose Nanoparticle-Reinforced Polymethylmethacrylate Composites [J].
Han, Guangping ;
Huan, Siqi ;
Han, Jingquan ;
Zhang, Zhen ;
Wu, Qinglin .
MATERIALS, 2014, 7 (01) :16-29
[10]   Synchrotron X-ray fiber diffraction study on the thermal expansion behavior of cellulose crystals in tension wood of Japanese poplar in the low-temperature region [J].
Hidaka, Hitomi ;
Kim, Ung-Jin ;
Wada, Masahisa .
HOLZFORSCHUNG, 2010, 64 (02) :167-171