Avoiding Bias in Observational Studies

被引:200
作者
Hammer, G. P. [1 ]
Prel, J. D. [2 ]
Blettner, M. [1 ]
机构
[1] Univ Med Johannes Gutenberg Univ, IMBEI, D-55101 Mainz, Germany
[2] Univ Med Mainz, Zentrum Pravent Padiatrie, Zentrum Kinder & Jugendmed, Mainz, Germany
来源
DEUTSCHES ARZTEBLATT INTERNATIONAL | 2009年 / 106卷 / 41期
关键词
clinical research; study; observational study; epidemiology; data analysis; RISK; EXPOSURE; ALCOHOL; CANCER; ERROR;
D O I
10.3238/arztebl.2009.0664
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Many questions in human health research can only be answered with observational studies. In contrast to controlled experiments or well-planned, experimental randomized clinical trials, observational studies are subject to a number of potential problems that may bias their results. Methods: Some of the more important problems affecting observational studies are described and illustrated by examples. Additional information is provided with reference to a selection of the literature. Results: Factors that may bias the results of observational studies can be broadly categorized as: selection bias resulting from the way study subjects are recruited or from differing rates of study participation depending on the subjects' cultural background, age, or socioeconomic status, information bias, measurement error, confounders, and further factors. Conclusions: Observational studies make an important contribution to medical knowledge. The main methodological problems can be avoided by careful study planning. An understanding of the potential pitfalls is important in order to critically assess relevant publications.
引用
收藏
页码:664 / 668
页数:5
相关论文
共 50 条
  • [31] Risk of bias and confounding of observational studies of Zika virus infection: A scoping review of research protocols
    Reveiz, Ludovic
    Haby, Michelle M.
    Martinez-Vega, Ruth
    Pinzon-Flores, Carlos E.
    Elias, Vanessa
    Smith, Emma
    Pinart, Mariona
    Broutet, Nathalie
    Becerra-Posada, Francisco
    Aldighieri, Sylvain
    Van Kerkhove, Maria D.
    PLOS ONE, 2017, 12 (07):
  • [32] The Cross-Cut Statistic and its Sensitivity to Bias in Observational Studies with Ordered Doses of Treatment
    Rosenbaum, Paul R.
    BIOMETRICS, 2016, 72 (01) : 175 - 183
  • [33] Decision-Making And Selection Bias in Four Observational Studies on Duchenne and Becker Muscular Dystrophy
    Naarding, Karin J.
    Doorenweerd, Nathalie
    Koeks, Zaida
    Hendriksen, Ruben G. F.
    Chotkan, Kinita A.
    Krom, Yvonne D.
    de Groot, Imelda J. M.
    Straathof, Chiara S.
    Niks, Erik H.
    Kan, Hermien E.
    JOURNAL OF NEUROMUSCULAR DISEASES, 2020, 7 (04) : 433 - 442
  • [34] Assessing Bias in Studies of Prognostic Factors
    Hayden, Jill A.
    van der Windt, Danielle A.
    Cartwright, Jennifer L.
    Cote, Pierre
    Bombardier, Claire
    ANNALS OF INTERNAL MEDICINE, 2013, 158 (04) : 280 - 286
  • [35] Bisphosphonates and mortality: confounding in observational studies?
    Bergman, J.
    Nordstrom, A.
    Hommel, A.
    Kivipelto, M.
    Nordstrom, P.
    OSTEOPOROSIS INTERNATIONAL, 2019, 30 (10) : 1973 - 1982
  • [36] Embedding clinical interventions into observational studies
    Newman, Anne B.
    Aviles-Santa, M. Larissa
    Anderson, Garnet
    Heiss, Gerardo
    Howard, Wm. James
    Krucoff, Mitchell
    Kuller, Lewis H.
    Lewis, Cora E.
    Robinson, Jennifer G.
    Taylor, Herman
    Trevino, Roberto P.
    Weintraub, William
    CONTEMPORARY CLINICAL TRIALS, 2016, 46 : 100 - 105
  • [37] Card Studies for Observational Research in Practice
    Westfall, John M.
    Zittleman, Linda
    Staton, Elizabeth W.
    Parnes, Bennett
    Smith, Peter C.
    Niebauer, Linda J.
    Fernald, Douglas H.
    Quintela, Javan
    Van Vorst, Rebecca F.
    Dickinson, L. Miriam
    Pace, Wilson D.
    ANNALS OF FAMILY MEDICINE, 2011, 9 (01) : 63 - 68
  • [38] A meta-analysis of the crash risk of cannabis-positive drivers in culpability studies-Avoiding interpretational bias
    Rogeberg, Ole
    ACCIDENT ANALYSIS AND PREVENTION, 2019, 123 : 69 - 78
  • [39] Diagnostic challenges in primary care: Identifying and avoiding cognitive bias
    Rosen, Paul D.
    Klenzak, Scott
    Baptista, Stefanie
    JOURNAL OF FAMILY PRACTICE, 2022, 71 (03) : 124 - 132
  • [40] Revealing and avoiding bias in semantic similarity scores for protein pairs
    Wang, Jing
    Zhou, Xianxiao
    Zhu, Jing
    Zhou, Chenggui
    Guo, Zheng
    BMC BIOINFORMATICS, 2010, 11