Avoiding Bias in Observational Studies

被引:199
作者
Hammer, G. P. [1 ]
Prel, J. D. [2 ]
Blettner, M. [1 ]
机构
[1] Univ Med Johannes Gutenberg Univ, IMBEI, D-55101 Mainz, Germany
[2] Univ Med Mainz, Zentrum Pravent Padiatrie, Zentrum Kinder & Jugendmed, Mainz, Germany
来源
DEUTSCHES ARZTEBLATT INTERNATIONAL | 2009年 / 106卷 / 41期
关键词
clinical research; study; observational study; epidemiology; data analysis; RISK; EXPOSURE; ALCOHOL; CANCER; ERROR;
D O I
10.3238/arztebl.2009.0664
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Many questions in human health research can only be answered with observational studies. In contrast to controlled experiments or well-planned, experimental randomized clinical trials, observational studies are subject to a number of potential problems that may bias their results. Methods: Some of the more important problems affecting observational studies are described and illustrated by examples. Additional information is provided with reference to a selection of the literature. Results: Factors that may bias the results of observational studies can be broadly categorized as: selection bias resulting from the way study subjects are recruited or from differing rates of study participation depending on the subjects' cultural background, age, or socioeconomic status, information bias, measurement error, confounders, and further factors. Conclusions: Observational studies make an important contribution to medical knowledge. The main methodological problems can be avoided by careful study planning. An understanding of the potential pitfalls is important in order to critically assess relevant publications.
引用
收藏
页码:664 / 668
页数:5
相关论文
共 50 条
  • [21] Gastrointestinal prophylaxis for COVID-19: an illustration of severe bias arising from inappropriate comparators in observational studies
    Lin, Kueiyu Joshua
    Feldman, William B.
    Wang, Shirley V.
    Umarje, Siddhi Pramod
    D'Andrea, Elvira
    Tesfaye, Helen
    Zabotka, Luke E.
    Liu, Jun
    Desai, Rishi J.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2022, 151 : 45 - 52
  • [22] Poor Quality of Reporting Confounding Bias in Observational Intervention Studies: A Systematic Review
    Groenwold, Rolf H. H.
    Van Deursen, Anna M. M.
    Hoes, Arno W.
    Hak, Eelko
    ANNALS OF EPIDEMIOLOGY, 2008, 18 (10) : 746 - 751
  • [23] Weighing the evidence: Bias and confounding in epidemiologic studies in allergy/immunology
    Matsui, Elizabeth C.
    Keet, Corinne A.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2017, 139 (02) : 448 - 450
  • [24] General concepts in biostatistics and clinical epidemiology: Observational studies observational studies with cohort design
    Lazcano, Gabriel
    Papuzinski, Cristian
    Madrid, Eva
    Arancibia, Marcelo
    MEDWAVE, 2019, 19 (11):
  • [25] A Dynamic Model for Evaluation of the Bias of Influenza Vaccine Effectiveness Estimates From Observational Studies
    Ainslie, Kylie E. C.
    Shi, Meng
    Haber, Michael
    Orenstein, Walter A.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2019, 188 (02) : 451 - 460
  • [26] Confounding and bias in observational studies in inflammatory bowel disease: a meta-epidemiological study
    Piovani, Daniele
    Pansieri, Claudia
    Peyrin-Biroulet, Laurent
    Danese, Silvio
    Bonovas, Stefanos
    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2021, 53 (06) : 712 - 721
  • [27] The confounder matrix: A tool to assess confounding bias in systematic reviews of observational studies of etiology
    Petersen, Julie M.
    Barrett, Malcolm
    Ahrens, Katherine A.
    Murray, Eleanor J.
    Bryant, Allison S.
    Hogue, Carol J.
    Mumford, Sunni L.
    Gadupudi, Salini
    Fox, Matthew P.
    Trinquart, Ludovic
    RESEARCH SYNTHESIS METHODS, 2022, 13 (02) : 242 - 254
  • [28] Evolve osteoporosis and other guidelines avoiding cognitive bias
    O'Donnell, J. L.
    INTERNAL MEDICINE JOURNAL, 2016, 46 (10) : 1129 - 1133
  • [29] Assessing and attenuating the impact of selection bias on spatial cluster detection studies
    Boyle, Joseph
    Ward, Mary H.
    Cerhan, James R.
    Rothman, Nathaniel
    Wheeler, David C.
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2024, 49
  • [30] Negative Controls to Detect Selection Bias and Measurement Bias in Epidemiologic Studies
    Arnold, Benjamin F.
    Ercumen, Ayse
    Benjamin-Chung, Jade
    Colford, John M., Jr.
    EPIDEMIOLOGY, 2016, 27 (05) : 637 - 641