BOUNDS ON EQUIANGULAR LINES AND ON RELATED SPHERICAL CODES

被引:18
作者
Bukh, Boris [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
equiangular lines; spherical codes; Gram matrices; Ramsey theory; SETS;
D O I
10.1137/15M1036920
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An L-spherical code is a set of Euclidean unit vectors whose pairwise inner products belong to the set L. We show, for a fixed 0 < alpha, beta < 1, that the size of any [-1, -beta]{alpha}-spherical code is at most linear in the dimension. In particular, this bound applies to sets of lines such that every two are at a fixed angle to each another.
引用
收藏
页码:549 / 554
页数:6
相关论文
共 50 条
  • [41] Constructive Spherical Codes by Hopf Foliations
    Miyamoto, Henrique K.
    Costa, Sueli I. R.
    Earp, Henrique N. Sa
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (12) : 7925 - 7939
  • [42] COUNTING SHEAVES USING SPHERICAL CODES
    Fouvry, Etienne
    Kowalski, Emmanuel
    Michel, Philippe
    [J]. MATHEMATICAL RESEARCH LETTERS, 2013, 20 (02) : 305 - 323
  • [43] Spherical codes and Borsuk's conjecture
    Hinrichs, A
    [J]. DISCRETE MATHEMATICS, 2002, 243 (1-3) : 253 - 256
  • [44] Flat Tori, Lattices and Spherical Codes
    Costa, Sueli I. R.
    Torezzan, Cristiano
    Campello, Antonio
    Vaishampayan, Vinay A.
    [J]. 2013 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2013,
  • [45] Generating ray class fields of real quadratic fields via complex equiangular lines
    Appleby, Marcus
    Flammia, Steven
    Mcconnell, Gary
    Yard, Jon
    [J]. ACTA ARITHMETICA, 2020, 192 (03) : 211 - 233
  • [46] Optimal bounds on codes for location in circulant graphs
    Junnila, Ville
    Laihonen, Tero
    Paris, Gabrielle
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (04): : 621 - 640
  • [47] Probabilistic bounds on the trapping redundancy of linear codes
    Tsunoda, Yu
    Fujiwara, Yuichiro
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1745 - 1749
  • [48] Upper bounds for constant-weight codes
    Agrell, E
    Vardy, A
    Zeger, K
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) : 2373 - 2395
  • [49] On kissing numbers and spherical codes in high dimensions
    Jenssen, Matthew
    Joos, Felix
    Perkins, Will
    [J]. ADVANCES IN MATHEMATICS, 2018, 335 : 307 - 321
  • [50] On spherical codes with inner products in a prescribed interval
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (2-3) : 299 - 315