BOUNDS ON EQUIANGULAR LINES AND ON RELATED SPHERICAL CODES

被引:18
作者
Bukh, Boris [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
equiangular lines; spherical codes; Gram matrices; Ramsey theory; SETS;
D O I
10.1137/15M1036920
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An L-spherical code is a set of Euclidean unit vectors whose pairwise inner products belong to the set L. We show, for a fixed 0 < alpha, beta < 1, that the size of any [-1, -beta]{alpha}-spherical code is at most linear in the dimension. In particular, this bound applies to sets of lines such that every two are at a fixed angle to each another.
引用
收藏
页码:549 / 554
页数:6
相关论文
共 50 条
  • [31] Constructions of complex equiangular lines from mutually unbiased bases
    Jedwab, Jonathan
    Wiebe, Amy
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 80 (01) : 73 - 89
  • [32] Frames over finite fields: Equiangular lines in orthogonal geometry
    Greaves, Gary R. W.
    Iverson, Joseph W.
    Jasper, John
    Mixon, Dustin G.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 639 : 50 - 80
  • [33] Constructions of complex equiangular lines from mutually unbiased bases
    Jonathan Jedwab
    Amy Wiebe
    Designs, Codes and Cryptography, 2016, 80 : 73 - 89
  • [34] Uniacute Spherical Codes
    Lepsveridze, Saba
    Saatashvili, Aleksandre
    Zhao, Yufei
    COMBINATORICA, 2025, 45 (01)
  • [35] Forbidden Subgraphs for Graphs of Bounded Spectral Radius, with Applications to Equiangular Lines
    Jiang, Zilin
    Polyanskii, Alexandr
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 236 (01) : 393 - 421
  • [36] On maximal spherical codes II
    Boyvalenkov, P
    Danev, D
    Landgev, I
    JOURNAL OF COMBINATORIAL DESIGNS, 1999, 7 (05) : 316 - 326
  • [37] Complex Spherical Designs and Codes
    Roy, Aidan
    Suda, Sho
    JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (03) : 105 - 148
  • [38] Stability of optimal spherical codes
    Boroczky, Karoly J.
    Glazyrin, Alexey
    MONATSHEFTE FUR MATHEMATIK, 2024, 205 (03): : 455 - 475
  • [39] Circulant Graphs and Spherical Codes
    Costa, S. I. R.
    Strapasson, J. E.
    Siqueira, R. M.
    Muniz, M.
    PROCEEDINGS OF THE IEEE INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM, VOLS 1 AND 2, 2006, : 42 - 45
  • [40] Upper bounds for binary identifying codes
    Exoo, Geoffrey
    Junnila, Ville
    Laihonen, Tero
    Ranto, Sanna
    ADVANCES IN APPLIED MATHEMATICS, 2009, 42 (03) : 277 - 289