BOUNDS ON EQUIANGULAR LINES AND ON RELATED SPHERICAL CODES

被引:18
|
作者
Bukh, Boris [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
equiangular lines; spherical codes; Gram matrices; Ramsey theory; SETS;
D O I
10.1137/15M1036920
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An L-spherical code is a set of Euclidean unit vectors whose pairwise inner products belong to the set L. We show, for a fixed 0 < alpha, beta < 1, that the size of any [-1, -beta]{alpha}-spherical code is at most linear in the dimension. In particular, this bound applies to sets of lines such that every two are at a fixed angle to each another.
引用
收藏
页码:549 / 554
页数:6
相关论文
共 50 条
  • [21] Equiangular Lines in Low Dimensional Euclidean Spaces
    Greaves, Gary R. W.
    Syatriadi, Jeven
    Yatsyna, Pavlo
    COMBINATORICA, 2021, 41 (06) : 839 - 872
  • [22] ON 2-TRANSITIVE SETS OF EQUIANGULAR LINES
    Dempwolff, Ulrich
    Kantor, William M.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 107 (01) : 134 - 145
  • [23] Equiangular lines and the Lemmens-Seidel conjecture
    Lin, Yen-Chi Roger
    Yu, Wei-Hsuan
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [24] Large sets of complex and real equiangular lines
    Jedwab, Jonathan
    Wiebe, Amy
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 134 : 98 - 102
  • [25] Frames over finite fields: Basic theory and equiangular lines in unitary geometry
    Greaves, Gary R. W.
    Iverson, Joseph W.
    Jasper, John
    Mixon, Dustin G.
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77
  • [26] Saturated configuration and new large construction of equiangular lines
    Lin, Yen-chi Roger
    Yu, Wei-Hsuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 588 : 272 - 281
  • [27] Submodule codes as spherical codes in buildings
    Mima Stanojkovski
    Designs, Codes and Cryptography, 2023, 91 : 2449 - 2472
  • [28] Submodule codes as spherical codes in buildings
    Stanojkovski, Mima
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (07) : 2449 - 2472
  • [29] Asymptotically dense spherical codes .1. Wrapped spherical codes
    Hamkins, J
    Zeger, K
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (06) : 1774 - 1785
  • [30] Constructions of complex equiangular lines from mutually unbiased bases
    Jedwab, Jonathan
    Wiebe, Amy
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 80 (01) : 73 - 89