BOUNDS ON EQUIANGULAR LINES AND ON RELATED SPHERICAL CODES

被引:18
|
作者
Bukh, Boris [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
equiangular lines; spherical codes; Gram matrices; Ramsey theory; SETS;
D O I
10.1137/15M1036920
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An L-spherical code is a set of Euclidean unit vectors whose pairwise inner products belong to the set L. We show, for a fixed 0 < alpha, beta < 1, that the size of any [-1, -beta]{alpha}-spherical code is at most linear in the dimension. In particular, this bound applies to sets of lines such that every two are at a fixed angle to each another.
引用
收藏
页码:549 / 554
页数:6
相关论文
共 50 条
  • [1] Equiangular lines and spherical codes in Euclidean space
    Balla, Igor
    Draxler, Felix
    Keevash, Peter
    Sudakov, Benny
    INVENTIONES MATHEMATICAE, 2018, 211 (01) : 179 - 212
  • [2] NEW BOUNDS FOR EQUIANGULAR LINES AND SPHERICAL TWO-DISTANCE SETS
    Yu, Wei-Hsuan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (02) : 908 - 917
  • [3] New bounds for equiangular lines
    Barg, Alexander
    Yu, Wei-Hsuan
    DISCRETE GEOMETRY AND ALGEBRAIC COMBINATORICS, 2014, 625 : 111 - 121
  • [4] Equiangular spherical codes in quantum cryptography
    Renes, JM
    QUANTUM INFORMATION & COMPUTATION, 2005, 5 (01) : 81 - 92
  • [5] NEW UPPER BOUNDS FOR EQUIANGULAR LINES BY PILLAR DECOMPOSITION
    King, Emily J.
    Tang, Xiaoxian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (04) : 2479 - 2508
  • [6] Asymptotic bounds for spherical codes
    Manin, Yu, I
    Marcolli, M.
    IZVESTIYA MATHEMATICS, 2019, 83 (03) : 540 - 564
  • [7] k-Point semidefinite programming bounds for equiangular lines
    de Laat, David
    Machado, Fabricio Caluza
    de Oliveira Filho, Fernando Mario
    Vallentin, Frank
    MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 533 - 567
  • [8] Upper bounds for s-distance sets and equiangular lines
    Glazyrin, Alexey
    Yu, Wei-Hsuan
    ADVANCES IN MATHEMATICS, 2018, 330 : 810 - 833
  • [9] Equiangular lines with a fixed angle
    Jiang, Zilin
    Tidor, Jonathan
    Yao, Yuan
    Zhang, Shengtong
    Zhao, Yufei
    ANNALS OF MATHEMATICS, 2021, 194 (03) : 729 - 743
  • [10] Upper bounds on the minimum distance of spherical codes
    Boyvalenkov, PG
    Danev, DP
    Bumova, SP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (05) : 1576 - 1581