Flexible free-standing paper electrodes based on reduced graphene oxide/δ-NaxV2O5•nH2O nanocomposite for high-performance aqueous zinc-ion batteries

被引:55
|
作者
Tang, Fangjie [1 ]
Zhou, Weijun [1 ]
Chen, Minfeng [1 ]
Chen, Jizhang [1 ]
Xu, Junling [2 ]
机构
[1] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Jiangsu, Peoples R China
[2] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium vanadate; Paper electrodes; Cellulose fibers; Aqueous batteries; Zinc ion storage; INTERCALATION; CATHODE; VANADATE; CAPACITY; STORAGE; HYBRID;
D O I
10.1016/j.electacta.2019.135137
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Most recently, aqueous zinc-ion batteries (AZIBs) are the research focus because of their low cost, high safety, and eco-friendliness. In this respect, flexible binder-free electrodes have been investigated by several studies to keep pace with the development of wearable electronics. However, the mass loading of active materials in these electrodes is usually below 2 mg cm(-2), considerably limiting the areal capacity. Herein, we report a paper electrode prepared via a facile vacuum filtration technique with a high mass loading of 5 mg cm(-2) for the active material, namely, reduced graphene oxide (rGO)/delta-NaxV2O5 center dot nH(2)O nanocomposite. Thanks to the homogeneous distribution and synergistic effect of the active material, carbon nanotubes, and cellulose fibers, the electrode not only exhibits good mechanical property and high electrical conductivity but also displays impressive performances for AZIBs. It achieves an admirable areal specific capacity of 1.87 mAh cm(-2) (corresponding to 374.9 mAh g(-1) for the active material), substantially higher than that of other flexible binder-free electrodes for (hybrid) AZIBs. Meanwhile, this electrode also shows good rate capability and excellent long-term cyclability (with a capacity retention of 92% over 4000 cycles). This work opens new opportunities towards flexible free-standing electrodes. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Hybridizing δ-type NaxV2O5•nH2O with graphene towards high-performance aqueous zinc-ion batteries
    Zhou, Weijun
    Chen, Jizhang
    He, Cuilan
    Chen, Minfeng
    Xu, Xinwu
    Tian, Qinghua
    Xu, Junling
    Wong, Ching-Ping
    ELECTROCHIMICA ACTA, 2019, 321
  • [2] Free-standing composite of NaxV2O5•nH2O nanobelts and carbon nanotubes with interwoven architecture for large areal capacity and high-rate capability aqueous zinc ion batteries
    Liu, Xiong
    Xu, Guobao
    Huang, Shouji
    Li, Lun
    Wang, Yuan
    Yang, Liwen
    ELECTROCHIMICA ACTA, 2021, 368 (368)
  • [3] Freestanding, Hierarchical, and Porous Bilayered NaxV2O5•nH2O/rGO/CNT Composites as High-Performance Cathode Materials for Nonaqueous K-Ion Batteries and Aqueous Zinc-Ion Batteries
    Xu, Guobao
    Liu, Xiong
    Huang, Shouji
    Li, Lun
    Wei, Xiaolin
    Cao, Juexian
    Yang, Liwen
    Chu, Paul K.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (01) : 706 - 716
  • [4] Layered Ni0.22V2O5·nH2O as high-performance cathode material for aqueous zinc-ion batteries
    Min Wei
    Wen Luo
    Danrui Yu
    Xiao Liang
    Wei Wei
    Mingrui Gao
    Shuokun Sun
    Quanyao Zhu
    Guoquan Liu
    Ionics, 2021, 27 : 4801 - 4809
  • [5] Layered Ni0.22V2O5•nH2O as high-performance cathode material for aqueous zinc-ion batteries
    Wei, Min
    Luo, Wen
    Yu, Danrui
    Liang, Xiao
    Wei, Wei
    Gao, Mingrui
    Sun, Shuokun
    Zhu, Quanyao
    Liu, Guoquan
    IONICS, 2021, 27 (11) : 4801 - 4809
  • [6] V2O5 ⋅ nH2O and Graphene Oxide/CNTs Composite Film as Binder-Free Cathode for Aqueous Zinc-Ion Batteries
    Rao, Diwen
    Zhang, Wenwei
    Cheng, Baochen
    Wang, Yu
    Lei, Chengsifan
    An, Qinyou
    Huang, Meng
    Mai, Liqiang
    BATTERIES & SUPERCAPS, 2024, 7 (05)
  • [7] A high-performance free-standing Zn anode for flexible zinc-ion batteries
    Gao, Chenxi
    Wang, Jiawei
    Huang, Yuan
    Li, Zixuan
    Zhang, Jiyan
    Kuang, Haoze
    Chen, Shuhao
    Nie, Zanxiang
    Huang, Shuyi
    Li, Wei
    Li, Yubo
    Jin, Shunyu
    Pan, Yuanjiang
    Long, Teng
    Luo, Jikui
    Zhou, Hang
    Wang, Xiaozhi
    NANOSCALE, 2021, 13 (22) : 10100 - 10107
  • [8] Layered MgxV2O5•nH2O as Cathode Material for High-Performance Aqueous Zinc Ion Batteries
    Ming, Fangwang
    Liang, Hanfeng
    Lei, Yongjiu
    Kandambeth, Sharath
    Eddaoudi, Mohamed
    Alshareef, Husam N.
    ACS ENERGY LETTERS, 2018, 3 (10): : 2602 - 2609
  • [9] Unlocking the Capacity of Vanadium Oxide by Atomically Thin Graphene-Analogous V2O5•nH2O in Aqueous Zinc-Ion Batteries
    Zhao, Danyang
    Wang, Xiaoying
    Zhang, Wenming
    Zhang, Yijing
    Lei, Yu
    Huang, Xintang
    Zhu, Qiancheng
    Liu, Jinping
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (13)
  • [10] 2D V10O24•nH2O sheets as a high-performance cathode material for aqueous zinc-ion batteries
    Mao, Fangfang
    Li, Yanwei
    Zou, Zhengguang
    Huang, Bin
    Zhu, Qing
    Yao, Jinhuan
    ELECTROCHIMICA ACTA, 2023, 442