HEp-2 Cell Classification in IIF Images Using ShareBoost

被引:0
|
作者
Ersoy, I. [1 ]
Bunyak, F. [1 ]
Peng, J. [2 ]
Palaniappan, K. [1 ]
机构
[1] Univ Missouri, Dept Comp Sci, Columbia, MO 65211 USA
[2] Montclair State Univ, Dept Comp Sci, Montclair, NJ 07043 USA
关键词
PATTERNS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Indirect immunofluorescence (IIF) imaging is a method used for detection of antinuclear auto-antibodies (ANA) for the diagnosis of autoimmune diseases. We present a feature extraction and classification scheme to classify the fluorescence staining patterns of HEp-2 cells in IIF images. We propose a set of complementary features that are sensitive to staining pattern variations among classes. Our feature set utilizes local shape measures via Hessian matrix, gradient features using our adaptive robust structure tensors and texture features. We apply our multi-view ShareBoost algorithm to this set using each feature descriptor as a separate view. ShareBoost utilizes a single re-sampling distribution for all views that helps the classifier to exploit the interplay between subspaces and is robust to noisy labels. Our experimental results show an average of over 90 percent accuracy in classification of six HEp-2 cell types.
引用
收藏
页码:3362 / 3365
页数:4
相关论文
共 50 条
  • [11] The Classification of HEp-2 Cell Patterns Using Fractal Descriptor
    Xu, Rudan
    Sun, Yuanyuan
    Yang, Zhihao
    Song, Bo
    Hu, Xiaopeng
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2015, 14 (05) : 513 - 520
  • [12] Revisiting HEp-2 Cell Image Classification
    Nigam, Ishan
    Agrawal, Shreyasi
    Singh, Richa
    Vatsa, Mayank
    IEEE ACCESS, 2015, 3 : 3102 - 3113
  • [13] A CAD SYSTEM IN HEP-2 IIF READING: A MULTICENTRE STUDY
    Rion, A.
    Infantino, M.
    Merone, M.
    Iannello, G.
    Sansone, C.
    Tincani, A.
    Cavazzana, I.
    Manfredi, M.
    Radice, A.
    Soda, P.
    Afeltra, A.
    ANNALS OF THE RHEUMATIC DISEASES, 2018, 77 : 1171 - 1172
  • [14] HEp-2 Cell Classification Using Descriptors Fused into the Dissimilarity Space
    Theodorakopoulos, Ilias
    Kastaniotis, Dimitris
    Economou, George
    Fotopoulos, Spiros
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2014, 23 (03)
  • [15] HEp-2 Cell Classification Using Binary Decision Tree Approach
    Divya, B. S.
    Subramaniam, Kamalraj
    Nanjundaswamy, H. R.
    2016 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2016, : 507 - 512
  • [16] HEp-2 Cell Classification Using an Ensemble of Convolutional Neural Networks
    Kasani, Payam Hosseinzadeh
    Kasani, Sara Hosseinzadeh
    Kim, Han Wool
    Cho, Kee Hyun
    Jang, Jae-Won
    Yun, Cheol-Heui
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 196 - 200
  • [17] Image analysis and classification of HEp-2 cells in fluorescent images
    Perner, P
    FOURTEENTH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1 AND 2, 1998, : 1677 - 1679
  • [18] HEp-2 Cell Images Classification Based on Statistical Texture Analysis and Fuzzy Logic
    Jamil, Nur Farahim Binti
    Faye, Ibrahima
    May, Zazilah
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 524 - 529
  • [19] HEp-2 Cell Image Classification: A Comparative Analysis
    Agrawal, Praful
    Vatsa, Mayank
    Singh, Richa
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2013), 2013, 8184 : 195 - 202
  • [20] HEp-2 Cell Images Classification Based on Textural and Statistic Features Using Self-Organizing Map
    Huang, Yi-Chu
    Hsieh, Tsu-Yi
    Chang, Chin-Yuan
    Cheng, Wei-Ta
    Lin, Yu-Chih
    Huang, Yu-Len
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2012), PT II, 2012, 7197 : 529 - 538