Pairwise Compatibility Graphs of Caterpillars

被引:13
作者
Calamoneri, Tiziana [1 ]
Frangioni, Antonio [2 ]
Sinaimeri, Blerina [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Informat, I-00185 Rome, Italy
[2] Univ Pisa, Dipartimento Informat, Pisa, Italy
关键词
pairwise comparability graphs; caterpillar; centipede; wheel;
D O I
10.1093/comjnl/bxt068
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A graph G=(V, E) is called a pairwise compatibility graph (PCG) if there exists an edge-weighted tree T and two non-negative real numbers d(min) and d(max) such that each leaf l(u) of T corresponds to a vertex uaV and there is an edge (u, v)aE if and only if d(min) a parts per thousand currency sign d(T,w) (l(u), l(v)) a parts per thousand currency sign d(max), where d(T,w) (l(u), l(v)) is the sum of the weights of the edges on the unique path from l(u) to l(v) in T. In this paper, we focus our attention on PCGs for which the witness tree is a caterpillar. We first give some properties of graphs that are PCGs of a caterpillar. We formulate this problem as an integer linear programming problem and we exploit this formulation to show that for the wheels on n vertices W-n, n=7, aEuro broken vertical bar, 11, the witness tree cannot be a caterpillar. Related to this result, we conjecture that no wheel is PCG of a caterpillar. Finally, we state a more general result proving that any PCG admits a full binary tree as witness tree T.
引用
收藏
页码:1616 / 1623
页数:8
相关论文
共 14 条
[1]  
[Anonymous], TECHNICAL REPORT
[2]   Ptolemaic graphs and interval graphs are leaf powers [J].
Brandstaedt, Andreas ;
Hundt, Christian .
LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 :479-491
[3]   Exact leaf powers [J].
Brandstaedt, Andreas ;
Le, Van Bang ;
Rautenbach, Dieter .
THEORETICAL COMPUTER SCIENCE, 2010, 411 (31-33) :2968-2977
[4]   Exploring pairwise compatibility graphs [J].
Calamoneri, T. ;
Montefusco, E. ;
Petreschi, R. ;
Sinaimeri, B. .
THEORETICAL COMPUTER SCIENCE, 2013, 468 :23-36
[5]  
Calamoneri Tiziana, 2012, WALCOM: Algorithms and Computation. Proceedings 6th International Workshop, WALCOM 2012, P124, DOI 10.1007/978-3-642-28076-4_14
[6]  
Calamoneri T., 2013, ELECT NOTES THEORETI
[7]   All Graphs with at Most Seven Vertices are Pairwise Compatibility Graphs [J].
Calamoneri, Tiziana ;
Frascaria, Dario ;
Sinaimeri, Blerina .
COMPUTER JOURNAL, 2013, 56 (07) :882-886
[8]  
Durocher Stephane, 2013, WALCOM: Algorithms and Computation. 7th International Workshop, WALCOM 2013. Proceedings, P310, DOI 10.1007/978-3-642-36065-7_29
[9]  
Kearney P, 2003, LECT N BIOINFORMAT, V2812, P177
[10]   On graph powers for leaf-labeled trees [J].
Nishimura, N ;
Ragde, P ;
Thilikos, DM .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2002, 42 (01) :69-108