SHARPER ESTIMATES FOR THE EIGENVALUES OF THE DIRICHLET FRACTIONAL LAPLACIAN ON PLANAR DOMAINS

被引:0
作者
Yildirim, Selma [1 ]
Yolcu, Turkay [2 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Bradley Univ, Dept Math, Peoria, IL 61625 USA
关键词
Fractional Laplacian; stable processes; eigenvalue; LI-YAU INEQUALITIES; NONLOCAL OPERATORS; EQUATIONS; SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the eigenvalues of the Dirichlet fractional Laplacian operator (-Delta)(alpha/2), 0 < alpha < 1, restricted to a bounded planar domain Omega subset of R-2. We establish new sharper lower bounds in the sense of the Weyl law for the of sums of eigenvalues, which advance the recent results obtained in several articles even in a more general setting.
引用
收藏
页数:14
相关论文
共 33 条
[1]  
[Anonymous], 1986, TRANSLATIONS MATH MO
[2]   ON RAYLEIGHS CONJECTURE FOR THE CLAMPED PLATE AND ITS GENERALIZATION TO 3 DIMENSIONS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
DUKE MATHEMATICAL JOURNAL, 1995, 78 (01) :1-17
[3]  
Ashbaugh MS., 1997, Internat. Ser. Numer. Math., V123, P95, DOI [10.1007/978-3-0348-8942-1_9, DOI 10.1007/978-3-0348-8942-1_9]
[4]  
Ashbaugh MS., 1996, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V23, P383
[5]   Heat trace of non-local operators [J].
Banuelos, Rodrigo ;
Yolcu, Selma Yildirim .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 87 :304-318
[6]  
Berezin FA, 1972, IZVEZ AKAD NAUK SS M, V36, P1134
[7]   Multifractal and Levy conservation laws [J].
Biler, P ;
Karch, G ;
Woyczynski, WA .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (05) :343-348
[8]  
Bogdan K., 2009, Potential Analysis of Stable Processes and its Extensions
[9]   Nonlocal Minimal Surfaces [J].
Caffarelli, L. ;
Roquejoffre, J. -M. ;
Savin, O. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (09) :1111-1144
[10]   Heat kernel estimates for the Dirichlet fractional Laplacian [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) :1307-1329