ASYMPTOTIC DISTRIBUTION OF SINGULAR VALUES OF POWERS OF RANDOM MATRICES

被引:41
作者
Alexeev, N. [1 ]
Goetze, F. [3 ]
Tikhomirov, A. [2 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, St Petersburg, Russia
[2] Syktyvkar State Univ, Dept Math, Komi Res Ctr, Ural Branch RAS, Syktyvkar, Russia
[3] Univ Bielefeld, Fac Math, D-4800 Bielefeld, Germany
关键词
random matrices; Fuss-Catalan numbers; semi-circular law; Marchenko-Pastur distribution;
D O I
10.1007/s10986-010-9074-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let x be a complex random variable such that Ex = 0, E|x|(2) = 1, and E|x|(4) < infinity. Let x(ij), i, j is an element of {1, 2,...}, be independent copies of x. Let X = ( N-(1/2) xij), 1 <= i, j <= N, be a random matrix. Writing X* for the adjoint matrix of X, consider the product (XX)-X-m*(m) with some m <= {1, 2,...}. The matrix (XX)-X-m*(m) is Hermitian positive semidefinite. Let lambda(1), lambda(2),...,lambda(N) be eigenvalues of (XX)-X-m*(m) (or squared singular values of the matrix X-m). In this paper, we find the asymptotic distribution function G((m))(x) = limN ->infinity EFN(m)(x) of the empirical distribution function F-N((m))(x) = N-1 Sigma(N)(k=1) I{lambda(k) <= x}, where I {A} stands for the indicator function of an event A. With m = 1, our result turns to a well- known result of Marchenko and Pastur [V. Marchenko and L. Pastur, The eigenvalue distribution in some ensembles of random matrices, Math. USSR Sb., 1:457- 483, 1967].
引用
收藏
页码:121 / 132
页数:12
相关论文
共 9 条
[1]  
Bai ZD, 1999, STAT SINICA, V9, P611
[2]  
BANICA T, ARXIV07105931
[3]  
Carleman T., 1926, FONCTIONS QUASIANALY
[4]  
Gessel IM, 2006, ELECTRON J COMB, V13
[5]  
Graham Ronald L., 1994, Concrete Mathematics: A Foundation For Computer Science, V2nd
[6]  
Marchenko V. A., 1967, Math. USSR, V114, P507, DOI [10.1070/SM1967v001n04ABEH001994, DOI 10.1070/SM1967V001N04ABEH001994]
[7]  
MLOTKOWSKI W, FUSS CATALAN NUMBERS
[8]  
NICA A, 2006, LECT COMB FREE PROB
[9]   On the powers of Voiculescu's circular element [J].
Oravecz, F .
STUDIA MATHEMATICA, 2001, 145 (01) :85-95