Three-Dimensional Hierarchical Frameworks Based on MoS2 Nanosheets Self-Assembled on Graphene Oxide for Efficient Electrocatalytic Hydrogen Evolution

被引:226
作者
Zhou, Weijia [1 ]
Zhou, Kai [1 ]
Hou, Dongman [2 ]
Liu, Xiaojun [1 ]
Li, Guoqiang [2 ]
Sang, Yuanhua [3 ]
Liu, Hong [3 ]
Li, Ligui [1 ]
Chen, Shaowei [1 ,4 ]
机构
[1] S China Univ Technol, Guangzhou Higher Educ Mega Ctr, Sch Environm & Energy, New Energy Res Inst, Guangzhou 510006, Guangdong, Peoples R China
[2] S China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
[3] Shandong Univ, State Key Lab Crystal Mat, Ctr Bio & Micro Nano Funct Mat, Jinan 250100, Shandong, Peoples R China
[4] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
关键词
MoS2; nanosheet; graphene oxide; hydrothermal; three-dimensional framework; electrocatalytic; hydrogen evolution reaction; ULTRATHIN NANOSHEETS; CATALYST; WATER; AEROGELS; SITES;
D O I
10.1021/am506545g
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Advanced materials for electrocatalytic water splitting are central to renewable energy research. In this work, three-dimensional (3D) hierarchical frameworks based on the self-assembly of MoS2 nanosheets on graphene oxide were produced via a simple one-step hydrothermal process. The structures of the resulting 3D frameworks were characterized by using a variety of microscopic and spectroscopic tools, including scanning and transmission electron microscopies, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman scattering. Importantly, the three-dimensional MoS2/graphene frameworks might be used directly as working electrodes which exhibited apparent and stable electrocatalytic activity in hydrogen evolution reaction (HER), as manifested by a large cathodic current density with a small overpotential of -107 mV (-121 mV when loaded on a glassy-carbon electrode) and a Tafel slope of 86.3 mV/dec (46.3 mV/dec when loaded on a glassy-carbon electrode). The remarkable performance might be ascribed to the good mechanical strength and high electrical conductivity of the 3D frameworks for fast charge transport and collection, where graphene oxide provided abundant nucleation sites for MoS2 deposition and oxygen incorporation led to the formation of defect-rich MoS2 nanosheets with active sites for HER.
引用
收藏
页码:21534 / 21540
页数:7
相关论文
共 33 条
[1]   Boron-Capped Tris(glyoximato) Cobalt Clathrochelate as a Precursor for the Electrodeposition of Nanoparticles Catalyzing H2 Evolution in Water [J].
Anxolabehere-Mallart, Elodie ;
Costentin, Cyrille ;
Fournier, Maxime ;
Nowak, Sophie ;
Robert, Marc ;
Saveant, Jean-Michel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (14) :6104-6107
[2]   Green preparation of reduced graphene oxide for sensing and energy storage applications [J].
Bo, Zheng ;
Shuai, Xiaorui ;
Mao, Shun ;
Yang, Huachao ;
Qian, Jiajing ;
Chen, Junhong ;
Yan, Jianhua ;
Cen, Kefa .
SCIENTIFIC REPORTS, 2014, 4
[3]   Enhanced Electrocatalytic Activity of MoSx on TCNQ-Treated Electrode for Hydrogen Evolution Reaction [J].
Chang, Yung-Huang ;
Nikam, Revannath D. ;
Lin, Cheng-Te ;
Huang, Jing-Kai ;
Tseng, Chien-Chih ;
Hsu, Chang-Lung ;
Cheng, Chia-Chin ;
Su, Ching-Yuan ;
Li, Lain-Jong ;
Chua, Daniel H. C. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (20) :17679-17685
[4]   Three- Dimensional Molybdenum Sulfi de Sponges for Electrocatalytic Water Splitting [J].
Chang, Yung-Huang ;
Wu, Feng-Yu ;
Chen, Tzu-Yin ;
Hsu, Chang-Lung ;
Chen, Chang-Hsiao ;
Wiryo, Ferry ;
Wei, Kung-Hwa ;
Chiang, Chia-Ying ;
Li, Lain-Jong .
SMALL, 2014, 10 (05) :895-900
[5]   Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams [J].
Chang, Yung-Huang ;
Lin, Cheng-Te ;
Chen, Tzu-Yin ;
Hsu, Chang-Lung ;
Lee, Yi-Hsien ;
Zhang, Wenjing ;
Wei, Kung-Hwa ;
Li, Lain-Jong .
ADVANCED MATERIALS, 2013, 25 (05) :756-760
[6]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[7]   Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (03) :2693-2703
[8]  
Esposito D.V., 2010, Angew. Chem. Int. Ed, V122, P10055
[9]   Phosphate Functionalized Graphene with Tunable Mechanical Properties [J].
Goods, John B. ;
Sydlik, Stefanie A. ;
Walish, Joseph J. ;
Swager, Timothy M. .
ADVANCED MATERIALS, 2014, 26 (05) :718-723
[10]   High-Efficiency Electrochemical Hydrogen Evolution Based on Surface Autocatalytic Effect of Ultrathin 3C-SiC Nanocrystals [J].
He, Chengyu ;
Wu, Xinglong ;
Shen, Jiancang ;
Chu, Paul K. .
NANO LETTERS, 2012, 12 (03) :1545-1548