Note on best possible bounds for determinants of matrices close to the identity matrix

被引:15
作者
Brent, Richard P. [1 ]
Osborn, Judy-anne H. [2 ]
Smith, Warren D. [3 ]
机构
[1] Australian Natl Univ, Canberra, ACT 0200, Australia
[2] Univ Newcastle, Callaghan, NSW 2308, Australia
[3] Ctr Range Voting, Stony Brook, NY 11790 USA
基金
澳大利亚研究理事会;
关键词
Determinant; Perturbation bound; Diagonally dominant matrix; Skew-Hadamard matrix; Fredholm determinant; Maximal determinant;
D O I
10.1016/j.laa.2014.09.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give upper and lower bounds on the determinant of a small perturbation of the identity matrix. The lower bounds are best possible, and in most cases they are stronger than well-known bounds due to Ostrowski and other authors. The upper bounds are best possible if a skew-Hadamard matrix of the same order exists. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:21 / 26
页数:6
相关论文
共 14 条
[1]  
[Anonymous], 1937, Commentarii Mathematici Helvetici
[2]  
[Anonymous], 1991, Topics in Matrix Analysis, 1991
[3]  
[Anonymous], 1893, Bull. des sciences math.
[4]   Higher order derivatives and perturbation bounds for determinants [J].
Bhatia, Rajendra ;
Jain, Tanvi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (11) :2102-2108
[5]  
Brent R.P., 2014, ARXIV14017048V7
[6]  
Brent R.P., 2014, ARXIV14026817V2
[7]  
Colbourn C. J., 2006, Handbook of Combinatorial Designs (Discrete Mathematics and Its Applications), V2nd
[8]   Bounds for determinants of perturbed M-matrices [J].
Elsner, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 257 :283-288
[9]  
Gerchgorin S., 1931, Izv. Akad. Nauk SSSR Ser. Mat, V6, P749
[10]   PERTURBATION BOUNDS FOR DETERMINANTS AND CHARACTERISTIC POLYNOMIALS [J].
Ipsen, Ilse C. F. ;
Rehman, Rizwana .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) :762-776