Groups whose vanishing class sizes are not divisible by a given prime

被引:16
作者
Dolfi, Silvio [1 ]
Pacifici, Emanuele [2 ]
Sanus, Lucia [3 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[2] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[3] Univ Valencia, Fac Matemat, Dept Algebra, E-46100 Valencia, Spain
关键词
Finite groups; Conjugacy classes; Vanishing elements; FINITE SIMPLE-GROUPS; CHARACTERS;
D O I
10.1007/s00013-010-0107-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. An element g is an element of G is a vanishing element of G if there exists an irreducible complex character chi of G such that chi(g) = 0: if this is the case, we say that the conjugacy class of g in G is a vanishing conjugacy class of G. In this paper we show that, if the size of every vanishing conjugacy class of G is not divisible by a given prime number p, then G has a normal p-complement and abelian Sylow p-subgroups.
引用
收藏
页码:311 / 317
页数:7
相关论文
共 13 条
[1]   CLASS COVERING NUMBERS OF FINITE SIMPLE-GROUPS [J].
ALVIS, D ;
BARRY, M .
JOURNAL OF ALGEBRA, 1993, 162 (02) :410-414
[2]   Character degree graphs that are complete graphs [J].
Bianchi, Mariagrazia ;
Chillag, David ;
Lewis, Mark L. ;
Pacifici, Emanuele .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (03) :671-676
[3]  
Conway J. H., 1985, ATLAS of Finite Groups
[4]   Primes dividing the degrees of the real characters [J].
Dolfi, Silvio ;
Navarro, Gabriel ;
Tiep, Pham Huu .
MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (04) :755-774
[5]   On the vanishing prime graph of solvable groups [J].
Dolfi, Silvio ;
Pacifici, Emanuele ;
Sanus, Lucia ;
Spiga, Pablo .
JOURNAL OF GROUP THEORY, 2010, 13 (02) :189-206
[6]   On the orders of zeros of irreducible characters [J].
Dolfi, Silvio ;
Pacifici, Emanuele ;
Sanus, Lucia ;
Spiga, Pablo .
JOURNAL OF ALGEBRA, 2009, 321 (01) :345-352
[7]   Defect zero p-blocks for finite simple groups [J].
Granville, A ;
Ono, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :331-347
[8]  
Huppert B., 1998, Character Theory of Finite Groups
[9]  
HUPPERT B, 1983, ENDLICHE GRUPPEN, V1
[10]  
Isaacs I. M., 2006, CHARACTER THEORY FIN