New concepts in infrared photodetector designs

被引:227
作者
Martyniuk, P. [1 ]
Antoszewski, J. [2 ]
Martyniuk, M. [2 ]
Faraone, L. [2 ]
Rogalski, A. [1 ]
机构
[1] Mil Univ Technol, Inst Appl Phys, 2 Kaliskiego Str, PL-00908 Warsaw, Poland
[2] Univ Western Australia, Sch Elect Elect & Comp Engn, Crawley, WA 6009, Australia
关键词
PHOTON-TRAPPING STRUCTURE; SUPERLATTICE; PERFORMANCE; HOT; PHOTODIODES; MWIR; WAVE; HETEROJUNCTIONS; DEVICES;
D O I
10.1063/1.4896193
中图分类号
O59 [应用物理学];
学科分类号
摘要
In 1959, Lawson and co-workers published the paper which triggered development of variable band gap Hg1-xCdxTe (HgCdTe) alloys providing an unprecedented degree of freedom in infrared detector design. HgCdTe ternary alloy has been used for realization of detectors operating under various modalities including: photoconductor, photodiode, and metal-insulator-semiconductor detector designs. Over the last five decades, this material system has successfully overcome the challenges from other material systems. It is important to notice that none of these competitors can compete in terms of fundamental properties. The competition may represent more mature technology but not higher performance or, with the exception of thermal detectors, higher operating temperatures (HOTs) for ultimate performance. In the last two decades, several new concepts for improvement of the performance of photodetectors have been proposed. These new concepts are particularly addressing the drive towards the so called HOT detectors aiming to increase detector operating temperatures. In this paper, new strategies in photodetector designs are reviewed, including barrier detectors, unipolar barrier photodiodes, multistage detectors and trapping detectors. Some of these new solutions have emerged as a real competitor to HgCdTe photodetectors. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:35
相关论文
共 119 条
[31]   Photonic crystal slab quantum well infrared photodetector [J].
Kalchmair, S. ;
Detz, H. ;
Cole, G. D. ;
Andrews, A. M. ;
Klang, P. ;
Nobile, M. ;
Gansch, R. ;
Ostermaier, C. ;
Schrenk, W. ;
Strasser, G. .
APPLIED PHYSICS LETTERS, 2011, 98 (01)
[32]   Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer superlattice detectors [J].
Khoshakhlagh, A. ;
Rodriguez, J. B. ;
Plis, E. ;
Bishop, G. D. ;
Sharma, Y. D. ;
Kim, H. S. ;
Dawson, L. R. ;
Krishna, S. .
APPLIED PHYSICS LETTERS, 2007, 91 (26)
[33]   Mid-Wavelength InAsSb Detectors Based on nBn Design [J].
Khoshakhlagh, A. ;
Myers, S. ;
Plis, E. ;
Kutty, M. N. ;
Klein, B. ;
Gautam, N. ;
Kim, H. ;
Smith, E. P. G. ;
Rhiger, D. ;
Johnson, S. M. ;
Krishna, S. .
INFRARED TECHNOLOGY AND APPLICATIONS XXXVI, PTS 1 AND 2, 2010, 7660
[34]   High operating temperature MWIR detectors [J].
Kinch, M. A. ;
Schaake, H. F. ;
Strong, R. L. ;
Liao, P. K. ;
Ohlson, M. J. ;
Jacques, J. ;
Wan, C-F ;
Chandra, D. ;
Burford, R. D. ;
Schaake, C. A. .
INFRARED TECHNOLOGY AND APPLICATIONS XXXVI, PTS 1 AND 2, 2010, 7660
[35]  
Kinch M. A., 2007, Fundamentals of Infrared Detector Materials
[36]   Comparison of nBn and nBp mid-wave barrier infrared photodetectors [J].
Klem, J. F. ;
Kim, J. K. ;
Cich, M. J. ;
Hawkins, S. D. ;
Fortune, T. R. ;
Rienstra, J. L. .
QUANTUM SENSING AND NANOPHOTONIC DEVICES VII, 2010, 7608
[37]   Low SWaP MWIR detector based on XBn Focal Plane Array [J].
Klipstein, P. C. ;
Gross, Y. ;
Aronov, D. ;
ben Ezra, M. ;
Berkowicz, E. ;
Cohen, Y. ;
Fraenkel, R. ;
Glozman, A. ;
Grossman, S. ;
Klin, O. ;
Lukomsky, I. ;
Markowitz, T. ;
Shkedy, L. ;
Shtrichman, I. ;
Snapi, N. ;
Tuito, A. ;
Yassen, M. ;
Weiss, E. .
INFRARED TECHNOLOGY AND APPLICATIONS XXXIX, 2013, 8704
[38]  
Klipstein P.C., 2003, US Patent, Patent No. [7,795,640, 7795640]
[39]   XBn barrier photodetectors based on InAsSb with high operating temperatures [J].
Klipstein, Philip ;
Klin, Olga ;
Grossman, Steve ;
Snapi, Noam ;
Lukomsky, Inna ;
Aronov, Daniel ;
Yassen, Michael ;
Glozman, Alex ;
Fishman, Tal ;
Berkowicz, Eyal ;
Magen, Osnat ;
Shtrichman, Itay ;
Weiss, Eliezer .
OPTICAL ENGINEERING, 2011, 50 (06)
[40]   High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD [J].
Kopytko, M. ;
Keblowski, A. ;
Gawron, W. ;
Madejczyk, P. ;
Kowalewski, A. ;
Jozwikowski, K. .
OPTO-ELECTRONICS REVIEW, 2013, 21 (04) :402-405