Two-step deep neural network for segmentation of deep white matter hyperintensities in migraineurs

被引:22
|
作者
Hong, Jisu [1 ,2 ]
Park, Bo-yong [1 ,2 ]
Lee, Mi Ji [3 ]
Chung, Chin-Sang [3 ]
Cha, Jihoon [4 ]
Park, Hyunjin [2 ,5 ]
机构
[1] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon 16419, South Korea
[2] IBS, Ctr Neurosci Imaging Res, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, Samsung Med Ctr, Dept Neurol, Sch Med, Seoul 06351, South Korea
[4] Yonsei Univ, Severance Hosp, Res Inst Radiol Sci, Dept Radiol,Coll Med, Seoul 03722, South Korea
[5] Sungkyunkwan Univ, Sch Elect & Elect Engn, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Deep white matter hyperintensity; Segmentation; Deep neural network; Migraine; SMALL VESSEL DISEASE;
D O I
10.1016/j.cmpb.2019.105065
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objective: Patients with migraine show an increased presence of white matter hyperintensities (WMHs), especially deep WMHs. Segmentation of small, deep WMHs is a critical issue in managing migraine care. Here, we aim to develop a novel approach to segmenting deep WMHs using deep neural networks based on the U-Net. Methods: 148 non-elderly subjects with migraine were recruited for this study. Our model consists of two networks: the first identifies potential deep WMH candidates, and the second reduces the false positives within the candidates. The first network for initial segmentation includes four down-sampling layers and four up-sampling layers to sort the candidates. The second network for false positive reduction uses a smaller field-of-view and depth than the first network to increase utilization of local information. Results: Our proposed model segments deep WMHs with a high true positive rate of 0.88, a low false discovery rate of 0.13, and F-1 score of 0.88 tested with ten-fold cross-validation. Our model was automatic and performed better than existing models based on conventional machine learning. Conclusion: We developed a novel segmentation framework tailored for deep WMHs using U-Net. Our algorithm is open-access to promote future research in quantifying deep WMHs and might contribute to the effective management of WMHs in migraineurs. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Small deep white matter lesions are associated with right-to-left shunts in migraineurs
    Park, Hee-Kwon
    Lee, Seo-Young
    Kim, Seong-Eun
    Yun, Chang-Ho
    Kim, Sung Hun
    JOURNAL OF NEUROLOGY, 2011, 258 (03) : 427 - 433
  • [22] Compromised cerebrovascular reactivity in migraineurs with right-to-left shunts: a potential mechanism of white matter hyperintensities
    Xie, Qian Qian
    Chen, Xiaoxiang
    Tian, Yuxuan
    Fang, Le
    Zhao, Hongqin
    NEUROLOGICAL RESEARCH, 2022, 44 (08) : 754 - 760
  • [23] Deep learning-based segmentation in MRI-(immuno)histological examination of myelin and axonal damage in normal-appearing white matter and white matter hyperintensities
    Sole-Guardia, Gemma
    Luijten, Matthijs
    Janssen, Esther
    Visch, Ruben
    Geenen, Bram
    Kusters, Benno
    Claassen, Jurgen A. H. R.
    Litjens, Geert
    de Leeuw, Frank-Erik
    Wiesmann, Maximilian
    Kiliaan, Amanda J.
    BRAIN PATHOLOGY, 2024,
  • [24] Common Genetic Variation Indicates Separate Causes for Periventricular and Deep White Matter Hyperintensities
    Armstrong, Nicola J.
    Mather, Karen A.
    Sargurupremraj, Muralidharan
    Knol, Maria J.
    Malik, Rainer
    Satizabal, Claudia L.
    Yanek, Lisa R.
    Wen, Wei
    Gudnason, Vilmundur G.
    Dueker, Nicole D.
    Elliott, Lloyd T.
    Hofer, Edith
    Bis, Joshua
    Jahanshad, Neda
    Li, Shuo
    Logue, Mark A.
    Luciano, Michelle
    Scholz, Markus
    Smith, Albert V.
    Trompet, Stella
    Vojinovic, Dina
    Xia, Rui
    Alfaro-Almagro, Fidel
    Ames, David
    Amin, Najaf
    Amouyel, Philippe
    Beiser, Alexa S.
    Brodaty, Henry
    Deary, Ian J.
    Fennema-Notestine, Christine
    Gampawar, Piyush G.
    Gottesman, Rebecca
    Griffanti, Ludovica
    Jack, Clifford R., Jr.
    Jenkinson, Mark
    Jiang, Jiyang
    Kral, Brian G.
    Kwok, John B.
    Lampe, Leonie
    Liewald, David C. M.
    Maillard, Pauline
    Marchini, Jonathan
    Bastin, Mark E.
    Mazoyer, Bernard
    Pirpamer, Lukas
    Rafael Romero, Jose
    Roshchupkin, Gennady V.
    Schofield, Peter R.
    Schroeter, Matthias L.
    Stott, David J.
    STROKE, 2020, 51 (07) : 2111 - 2121
  • [25] Deep white matter hyperintensities, microstructural integrity and dual task walking in older people
    Tabassom Ghanavati
    Myriam Sillevis Smitt
    Stephen R. Lord
    Perminder Sachdev
    Wei Wen
    Nicole A. Kochan
    Henry Brodaty
    Kim Delbaere
    Brain Imaging and Behavior, 2018, 12 : 1488 - 1496
  • [26] Deep white matter hyperintensities, microstructural integrity and dual task walking in older people
    Ghanavati, Tabassom
    Smitt, Myriam Sillevis
    Lord, Stephen R.
    Sachdev, Perminder
    Wen, Wei
    Kochan, Nicole A.
    Brodaty, Henry
    Delbaere, Kim
    BRAIN IMAGING AND BEHAVIOR, 2018, 12 (05) : 1488 - 1496
  • [27] An early detection and segmentation of Brain Tumor using Deep Neural Network
    Aggarwal, Mukul
    Tiwari, Amod Kumar
    Sarathi, M. Partha
    Bijalwan, Anchit
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [28] Paraspinal Muscle Segmentation Based on Deep Neural Network
    Li, Haixing
    Luo, Haibo
    Liu, Yunpeng
    SENSORS, 2019, 19 (12)
  • [29] Learning Deep Conditional Neural Network for Image Segmentation
    Wang, Qiurui
    Yuan, Chun
    Liu, Yan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (07) : 1839 - 1852
  • [30] Deep Convolutional Neural Network for Brain Tumor Segmentation
    Kumar, K. Sambath
    Rajendran, A.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (05) : 3925 - 3932