Coordination polymer derived cobalt embedded in nitrogen-doped carbon nanotubes for efficient electrocatalysis of oxygen evolution reaction

被引:22
|
作者
Cong, Jingkun [1 ]
Li, Changqing [1 ]
Zhao, Tao [1 ]
Wu, Jin [1 ]
Zhang, Rui [1 ]
Ren, Wenjing [1 ]
Wang, Shunli [2 ]
Gao, Junkuo [1 ,3 ]
Liu, Yi [1 ,3 ]
Yao, Juming [1 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Mat & Text, Natl Engn Lab Text Fiber Mat & Proc Technol Zheji, Key Lab Adv Text Mat & Mfg Technol,Minist Educ, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Sci Tech Univ, Dept Phys, Ctr Optoelect Mat & Devices, Hangzhou 310018, Zhejiang, Peoples R China
[3] Zhejiang Univ, Coll Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Coordination polymer; Carbon nanotube; Oxygen evolution reaction; Overpotential; Electrocatalysis; METAL-ORGANIC-FRAMEWORK; NANOPOROUS CARBONS; REDUCTION; CATALYSTS; COMPOSITE; PHASE;
D O I
10.1016/j.jssc.2017.05.042
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
In this paper, we reported the fabrication of Co-embedded nitrogen-doped carbon nanotube (Co-NCNT) by using Co-melamine coordination polymer (CP) as precursor. The sample was well characterized via SEM, TEM, XRD, XPS and BET methods. The Co-NCNT shows excellent and stable catalytic performance for OER. The overpotential of Co-NCNT at 10 mA cm(-2). is 370 mV (vs RHE). The current density of Co-NCNT could reach 100 mA cm(-2) at overpotential of 520 mV, which showed much better performance than RuO2, while the largest current density of RuO2 could reach is only 44 mA cm(-2). The Tafel slope of Co-NCNT is 56 mV dec(-1), which is smaller than that of commercial RuO2 (58 mV dec(-1)). The results indicate that metal-melamine based CPs or MOFs can be promising precursors for the preparation of efficient metal-embedded nitrogen-doped carbon materials for electrocatalysis.
引用
收藏
页码:227 / 230
页数:4
相关论文
共 50 条
  • [41] Nitrogen-Doped Mesostructured Carbon-Supported Metallic Cobalt Nanoparticles for Oxygen Evolution Reaction
    Baehr, Alexander
    Moon, Gun-hee
    Tueysuez, Harun
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) : 6672 - 6680
  • [42] Cobalt Sulfide Embedded in Porous Nitrogen-doped Carbon as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions
    Cao, Xuecheng
    Zheng, Xiangjun
    Tian, Jinghua
    Jin, Chao
    Ke, Ke
    Yang, Ruizhi
    ELECTROCHIMICA ACTA, 2016, 191 : 776 - 783
  • [43] Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the electrocatalytic oxygen reduction reaction
    Zhang, Yijie
    Lu, Luhua
    Zhang, Si
    Lv, Zaozao
    Yang, Dantong
    Liu, Jinghai
    Chen, Ying
    Tian, Xiaocong
    Jin, Hongyun
    Song, Weiguo
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (14) : 5740 - 5745
  • [44] N8-Polynitrogen Stabilized on Nitrogen-Doped Carbon Nanotubes as an Efficient Electrocatalyst for Oxygen Reduction Reaction
    Yao, Zhenhua
    Fan, Ruiyang
    Ji, Wangyang
    Yan, Tingxuan
    Hu, Maocong
    CATALYSTS, 2020, 10 (08)
  • [45] CoP nanoparticles embedded in N-doped carbon for highly efficient oxygen evolution reaction electrocatalysis
    Zhang, Zewu
    Dai, Yifan
    Chen, Lijingxian
    Bai, Jiakai
    Bu, Xiaohai
    Bao, Jiehua
    MATERIALS LETTERS, 2024, 364
  • [46] Mechanistic Discussion of the Oxygen Reduction Reaction at Nitrogen-Doped Carbon Nanotubes
    Wiggins-Camacho, Jaclyn D.
    Stevenson, Keith J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40) : 20002 - 20010
  • [47] Cobalt doped β-molybdenum carbide nanoparticles encapsulated within nitrogen-doped carbon for oxygen evolution
    Zhu, Xinyang
    Zhang, Xueping
    Huang, Liang
    Liu, Yongqin
    Zhang, He
    Dong, Shaojun
    CHEMICAL COMMUNICATIONS, 2019, 55 (67) : 9995 - 9998
  • [48] Nitrogen-Doped Nickel Selenium Nanosheets for Highly Efficient Oxygen Evolution Reaction
    Cai, Chen
    Gao, Cunyuan
    Lin, Shuai
    Cai, Bin
    CATALYSTS, 2023, 13 (10)
  • [49] A high activity nitrogen-doped carbon catalyst for oxygen reduction reaction derived from polyaniline-iron coordination polymer
    Wang, Guanghua
    Jiang, Kezhu
    Xu, Mingli
    Min, Chungang
    Ma, Baohua
    Yang, Xikun
    JOURNAL OF POWER SOURCES, 2014, 266 : 222 - 225
  • [50] Investigating the active sites in molybdenum anchored nitrogen-doped carbon for alkaline oxygen evolution reaction
    Wang, Yuan
    Dong, Rui
    Tan, Pengfei
    Liu, Hongqin
    Liao, Hanxiao
    Jiang, Min
    Liu, Yong
    Yang, Lu
    Pan, Jun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 609 : 617 - 626