Combinatorially composing Chebyshev polynomials

被引:4
作者
Benjamin, Arthur T. [1 ]
Walton, Daniel [2 ]
机构
[1] Harvey Mudd Coll, Dept Math, Claremont, CA 91711 USA
[2] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA
关键词
Chebyshev polynomials; Combinatorial proof; Tiling;
D O I
10.1016/j.jspi.2010.01.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a combinatorial proof of two fundamental composition identities associated with Chebyshev polynomials. Namely, for all m, n >= 0, T(m)(T(n)(x)) = T(mn)(x) and U(m-1) (T(n)(x))U(n-1)(x) = U(mn-1)(x). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2161 / 2167
页数:7
相关论文
共 6 条
[1]  
Benjamin A. T., 2003, Proofs That Really Count: The Art of Combinatorial Proof
[2]  
Benjamin A. T., 2009, Mathematics Magazine, V82, P117, DOI [10.1080/0025570X.2009.11953605, DOI 10.1080/0025570X.2009.11953605]
[3]   Combinatorial trigonometry with Chebyshev polynomials [J].
Benjamin, Arthur T. ;
Ericksen, Larry ;
Jayawant, Pallavi ;
Shattuck, Mark .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (08) :2157-2160
[4]  
Rivlin T.J., 2020, Chebyshev Polynomials
[5]   A COMBINATORIAL PROOF OF A TSCHEBYSCHEV POLYNOMIAL IDENTITY [J].
SHAPIRO, LW .
DISCRETE MATHEMATICS, 1981, 34 (02) :203-206
[6]  
WALTON D, 2007, THESIS HARVEY MUDD C