Reproducing chaos by variable structure recurrent neural networks

被引:7
作者
Felix, RA [1 ]
Sanchez, EN
Chen, GR
机构
[1] CINVESTAV, Unidad Guadalajara, Guadalajara, Jalisco, Mexico
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2004年 / 15卷 / 06期
关键词
chaos generation; identification; recurrent neural networks; variable structure system;
D O I
10.1109/TNN.2004.836236
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a new approach for chaos reproduction using variable structure recurrent neural networks (VSRNN). A neural network identifier is designed, with a variable structure that will change according to its output performance as compared to the given orbits of an unknown chaotic systems. A tradeoff between identification errors and computational complexity is discussed.
引用
收藏
页码:1450 / 1457
页数:8
相关论文
共 13 条
[11]  
SANCHEZ EN, 2002, IFAC ORLD C BARC SPA
[12]  
SANCHEZ EN, 2002, 9 INT C NEUR INF PRO
[13]   Stability theory for hybrid dynamical systems [J].
Ye, H ;
Michel, AN ;
Hou, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (04) :461-474