Dempster-Shafer theory for sensor fusion in autonomous mobile robots

被引:129
作者
Murphy, RR [1 ]
机构
[1] Colorado Sch Mines, Dept Math & Comp Sci, Ctr Robot & Intelligent Syst, Golden, CO 80401 USA
来源
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION | 1998年 / 14卷 / 02期
关键词
Dempster-Shafer theory; evidential reasoning; mobile robots; sensor fusion;
D O I
10.1109/70.681240
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article discusses Dempster-Shafer (DS) theory in terms of its utility for sensor fusion for autonomous mobile robots, It exploits two little used components of DS theory: the weight of conflict metric and the enlargement of the frame of discernment, The weight of conflict is used to measure the amount of consensus between different sensors, A lack of consensus leads the robot to either compensate within certain limits or investigate the problem further, adding robustness to the robot's operation. Enlarging the frame of discernment allows a modular decomposition of evidence, This decomposition offers the advantages of perceptual abstraction, and permits expert knowledge about the domain to be embedded in the frames of discernment, simplifying the construction and maintenance of the knowledge base. Six experiments using this Dempster-Shafer framework are presented, Data from four types of sensor data were collected by a mobile robot and fused with the Sensor Fusion Effects (SFX) architecture.
引用
收藏
页码:197 / 206
页数:10
相关论文
共 54 条
  • [11] CHAVEZ GT, 1993, P SPIE SENSOR FUSION, V6, P142
  • [12] CHEESEMAN P, 1985, P 9 INT JOINT C ART, V2, P1002
  • [13] DONALD B, 1991, P IEEE RSJ INT C INT
  • [14] DUBOIS D, 1990, READINGS UNCERTAIN R
  • [15] DURRANTWHYTE HF, 1988, INTEGRATION COORDINA
  • [16] GARVEY TD, 1981, 7TH P INT JOINT C AR, V1, P319
  • [17] HALPERN JY, 1984, 4313 RJ MIT ART INT
  • [18] LOGICAL SENSOR SYSTEMS
    HENDERSON, T
    SHILCRAT, E
    [J]. JOURNAL OF ROBOTIC SYSTEMS, 1984, 1 (02): : 169 - 193
  • [19] HUGHES K, 1992, P SPIE STOCH METH SI
  • [20] Hutchinson S. A., 1989, Proceedings CVPR '89 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.89CH2752-4), P541, DOI 10.1109/CVPR.1989.37899