On the Solutions of Some Boundary Value Problems for the General Kdv Equation

被引:0
作者
Ignatyev, M. Yu. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Math, Saratov 410012, Russia
关键词
KdV hierarchy; Boundary value problems; Integrability; Inverse spectral method; NONLINEAR SCHRODINGER-EQUATION; HALF-LINE; EVOLUTION-EQUATIONS;
D O I
10.1007/s11040-014-9167-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a class of partial differential equations, which are linear combinations, with constant coefficients, of the classical flows of the KdV hierarchy. A boundary value problem with inhomogeneous boundary conditions of a certain special form is studied. We construct some class of solutions of the problem using the inverse spectral method.
引用
收藏
页码:493 / 509
页数:17
相关论文
共 19 条
[1]   Boundary conditions for integrable equations [J].
Adler, V ;
Gurel, B ;
Gurses, M ;
Habibullin, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (10) :3505-3513
[2]   Boundary value problem for the KdV equation on a half-line [J].
Adler, VE ;
Habibullin, IT ;
Shabat, AB .
THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 110 (01) :78-90
[3]  
Beals R.R., 1988, Direct and inverse scattering on the line, V28
[4]   INITIAL BOUNDARY-VALUE PROBLEM FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
BIKBAEV, RF ;
TARASOV, VO .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (11) :2507-2516
[5]   ALGEBROGEOMETRIC SOLUTIONS OF A BOUNDARY-VALUE PROBLEM FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
BIKBAEV, RF ;
ITS, AR .
MATHEMATICAL NOTES, 1989, 45 (5-6) :349-354
[6]  
BIKBAEV RF, 1991, ALGEBR ANAL, V3, P78
[7]   THE mKdV EQUATION ON THE HALF-LINE [J].
De Monvel, A. Boutet ;
Fokas, A. S. ;
Shepelsky, D. .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2004, 3 (02) :139-164
[8]   Integrable nonlinear evolution equations on a finite interval [J].
de Monvel, AB ;
Fokas, AS ;
Shepelsky, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 263 (01) :133-172
[9]   Initial-Boundary Value Problem for the Camassa-Holm Equation with Linearizable Boundary Condition [J].
de Monvel, Anne Boutet ;
Shepelsky, Dmitry .
LETTERS IN MATHEMATICAL PHYSICS, 2011, 96 (1-3) :123-141
[10]   Explicit soliton asymptotics for the Korteweg-de Vries equation on the half-line [J].
Fokas, A. S. ;
Lenells, J. .
NONLINEARITY, 2010, 23 (04) :937-976