Learning vector quantization for classifying astronomical objects

被引:11
作者
Zhang, YX [1 ]
Zhao, YH [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
来源
CHINESE JOURNAL OF ASTRONOMY AND ASTROPHYSICS | 2003年 / 3卷 / 02期
关键词
method : data analysis; method : statistical; catalogs;
D O I
10.1088/1009-9271/3/2/183
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The sizes of astronomical surveys in different wavebands are increasing rapidly. Therefore, automatic classification of objects is becoming ever more important. We explore the performance of learning vector quantization (LVQ) in classifying multi-wavelength data. Our analysis concentrates on separating active sources from non-active ones. Different classes of X-ray emitters populate distinct regions of a multidimensional parameter space. In order to explore the distribution of various objects in a multidimensional parameter space, we positionally cross-correlate the data of quasars, BL Lacs, active galaxies, stars and normal galaxies in the optical, X-ray and infrared bands. We then apply LVQ to classify them with the obtained data. Our results show that LVQ is an effective method for separating AGNs from stars and normal galaxies with multi-wavelength data.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 21 条
[1]   Wide field imaging - I. Applications of neural networks to object detection and star/galaxy classification [J].
Andreon, S ;
Gargiulo, G ;
Longo, G ;
Tagliaferri, R ;
Capuano, N .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 319 (03) :700-716
[2]   Automated classification of stellar spectra - II. Two-dimensional classification with neural networks and principal components analysis [J].
Bailer-Jones, CAL ;
Irwin, M ;
von Hippel, T .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 298 (02) :361-377
[3]   A comparison of neural network algorithms and preprocessing methods for star-galaxy discrimination [J].
Bazell, D ;
Peng, Y .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1998, 116 (01) :47-55
[4]   SExtractor: Software for source extraction [J].
Bertin, E ;
Arnouts, S .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1996, 117 (02) :393-404
[5]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[6]  
deVaucouleurs G., 1991, Third Reference Catalogue of Bright Galaxies. Volume I: Explanations and References, DOI DOI 10.1007/978-1-4757-4360-9
[7]   THE SELF-ORGANIZING MAP [J].
KOHONEN, T .
PROCEEDINGS OF THE IEEE, 1990, 78 (09) :1464-1480
[8]  
KOHONEN T, 1989, SELFORGANIZATION ASS
[9]  
KOHONEN T, 1995, SELFORGANIZATION MAP
[10]   Neural computation as a tool for galaxy classification: Methods and examples [J].
Lahav, O ;
Naim, A ;
Sodre, L ;
Storrie-Lombardi, MC .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1996, 283 (01) :207-221