Rolling Pin Method: Efficient General Method of Joint Probability Modeling

被引:17
作者
Ahooyi, Taha Mohseni [1 ]
Arbogast, Jeffrey E. [2 ]
Soroush, Masoud [1 ]
机构
[1] Drexel Univ, Dept Chem & Biol Engn, Philadelphia, PA 19104 USA
[2] Amer Air Liquide, Newark, DE 19702 USA
基金
美国国家科学基金会;
关键词
DENSITY;
D O I
10.1021/ie503584q
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper presents a novel efficient method of estimating the joint probability distribution of continuous random variables with arbitrary (nonmonotonic or monotonic) relationships. As the backbone of the method is a set of monotonization transformations that roll out the relationships, the method is named the rolling pin method. The method allows one to estimate joint probability distributions when the actual causal structure of the attributes is unknown or extremely intricate to be determined accurately. Once the relationships are monotonized by the transformations, an appropriate parametric copula function is used to describe the joint distribution of the transformed variables. The copula function allows modeling the joint distribution of the transformed variables with a few parameters. The monotonization transformations empower standard parametric copulas to (i) capture complicated unknown dependence structures, (ii) model multivariate joint probability distributions with different pairwise dependence structures using the same parametric copula, and (iii) model nonmonotonicity. The application and performance of the method are shown using two examples.
引用
收藏
页码:20191 / 20203
页数:13
相关论文
共 23 条
[1]   Maximum-Likelihood Maximum-Entropy Constrained Probability Density Function Estimation for Prediction of Rare Events [J].
Ahooyi, Taha Mohseni ;
Soroush, Masoud ;
Arbogast, Jeffrey E. ;
Seider, Warren D. ;
Oktem, Ulku G. .
AICHE JOURNAL, 2014, 60 (03) :1013-1026
[2]  
[Anonymous], 1996, DISTRIBUTIONS FIXED, DOI DOI 10.1214/LNMS/1215452606
[3]  
[Anonymous], 1959, PUBLICATIONS INSTITU
[4]  
[Anonymous], 1999, PROBABILITY THEORY S
[5]  
[Anonymous], 1997, Multivariate models and multivariate dependence concepts
[6]  
Bedford T, 2002, ANN STAT, V30, P1031
[7]  
Eliason SR, 1993, Maximum likelihood estimation: Logic and practice
[8]   NON-PARAMETRIC ESTIMATION OF A MULTIVARIATE PROBABILITY DENSITY [J].
EPANECHN.VA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (01) :153-&
[9]  
Fang K.T., 1990, Symmetric multivariate and related distributions, P1
[10]  
Gentle J. E., 2009, COMPUTATION STAT, P475